Suppr超能文献

使用带有质子交换膜的功能化三氧化钨光阳极在可见光下将甲烷光电化学转化为乙烷和氢气。

Photoelectrochemical Conversion of Methane to Ethane and Hydrogen under Visible Light Using Functionalized Tungsten Trioxide Photoanodes with Proton Exchange Membrane.

作者信息

Amano Fumiaki, Suzuki Souta, Tsushiro Keisuke, Ito Junji, Naito Tetsuro, Kubota Hiroshi

机构信息

Department of Applied Chemistry for Environment, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan.

Advanced Materials and Processing Laboratory, Research Division, Nissan Motor Co., Ltd., 1 Natsushima-cho, Yokosuka, Kanagawa 237-8523, Japan.

出版信息

ACS Appl Mater Interfaces. 2024 May 15;16(19):24631-24640. doi: 10.1021/acsami.4c02713. Epub 2024 May 2.

Abstract

Developing methane utilization technologies is desired to convert abundant and renewable carbon resources, such as natural gas and biogas, into value-added chemical products. This study provides insights into emerging photoelectrochemical (PEC) technology for the photocatalytic transformation of methane to CH and H using visible light at room temperature. The PEC conversion of methane to oxygenates has been investigated in aqueous electrolytes. Herein, we demonstrate the gas-phase PEC methane conversion using a proton exchange membrane (PEM) as a solid polymer electrolyte and a gas-diffusion photoanode for methane oxidation. Tungsten trioxide (WO), a semiconductor photocatalyst responsive to visible light, is utilized as the photoanode material. Ultraviolet light (∼365 nm) excitation predominantly results in CO production with lower CH selectivity in humidified methane. In contrast, visible light (∼453 nm) effectively promotes CH production over the WO photoanode, attributed to preferential hydroxyl radical (OH) formation compared to UV irradiation. Photogenerated holes formed near the valence band maximum of WO contribute to OH formation through a single-electron water oxidation. The photogenerated OH activates gaseous methane molecules to methyl radicals, subsequently coupled into CH at the gas-electrolyte-semiconductor boundary. H is concurrently formed on the cathode electrocatalyst. Improving the selectivity for the dehydrogenative coupling of methane is pivotal for enhancing the energy efficiency in the PEM-PEC system.

摘要

开发甲烷利用技术旨在将丰富的可再生碳资源,如天然气和沼气,转化为增值化学产品。本研究深入探讨了新兴的光电化学(PEC)技术,该技术可在室温下利用可见光将甲烷光催化转化为CH和H。已在水性电解质中研究了甲烷向含氧化合物的PEC转化。在此,我们展示了使用质子交换膜(PEM)作为固体聚合物电解质和气体扩散光阳极进行甲烷氧化的气相PEC甲烷转化。三氧化钨(WO),一种对可见光有响应的半导体光催化剂,被用作光阳极材料。在加湿的甲烷中,紫外光(365nm)激发主要产生CO,CH选择性较低。相比之下,可见光(453nm)能有效促进在WO光阳极上生成CH,这归因于与紫外照射相比优先形成羟基自由基(OH)。在WO价带最大值附近形成的光生空穴通过单电子水氧化促进OH的形成。光生OH将气态甲烷分子激活为甲基自由基,随后在气-电解质-半导体边界处偶联形成CH。H同时在阴极电催化剂上生成。提高甲烷脱氢偶联的选择性对于提高PEM-PEC系统的能量效率至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验