Tushar Fakrul Islam, Vancoillie Liesbeth, McCabe Cindy, Kavuri Amareswararao, Dahal Lavsen, Harrawood Brian, Fryling Milo, Zarei Mojtaba, Sotoudeh-Paima Saman, Ho Fong Chi, Ghosh Dhrubajyoti, Harowicz Michael R, Tailor Tina D, Luo Sheng, Segars W Paul, Abadi Ehsan, Lafata Kyle J, Lo Joseph Y, Samei Ehsan
Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Laboratories, Dept. of Radiology, Duke University School of Medicine.
Dept. of Electrical & Computer Engineering, Pratt School of Engineering, Duke University.
ArXiv. 2024 Oct 28:arXiv:2404.11221v3.
Clinical imaging trials are crucial for evaluation of medical innovations, but the process is inefficient, expensive, and ethically-constrained. Virtual imaging trial (VIT) approach addresses these limitations by emulating the components of a clinical trial. An rendition of the National Lung Screening Trial (NCLS) via Virtual Lung Screening Trial (VLST) demonstrates the promise of VITs to expedite clinical trials, reduce risks to subjects, and facilitate the optimal use of imaging technologies in clinical settings.
To demonstrate that a virtual imaging trial platform can accurately emulate a major clinical trial, specifically the National Lung Screening Trial (NLST) that compared computed tomography (CT) and chest radiography (CXR) imaging for lung cancer screening.
A virtual patient population of 294 subjects was created from human models (XCAT) emulating the NLST, with two types of simulated cancerous lung nodules. Each virtual patient in the cohort was assessed using simulated CT and CXR systems to generate images reflecting the NLST imaging technologies. Deep learning models trained for lesion detection, AI CT-Reader, and AI CXR-Reader served as virtual readers.
The primary outcome was the difference in the Receiver Operating Characteristic Area Under the Curve (AUC) for CT and CXR modalities.
The study analyzed paired CT and CXR simulated images from 294 virtual patients. The AI CT-Reader outperformed the AI CXR-Reader across all levels of analysis. At the patient level, CT demonstrated superior diagnostic performance with an AUC of 0.92 (95% CI: 0.90-0.95), compared to CXR's AUC of 0.72 (0.67-0.77). Subgroup analyses of lesion types revealed CT had significantly better detection of homogeneous lesions (AUC 0.97, 95% CI: 0.95-0.98) compared to heterogeneous lesions (0.89; 0.86-0.93). Furthermore, when the specificity of the AI CT-Reader was adjusted to match the NLST sensitivity of 94% for CT, the VLST results closely mirrored the NLST findings, further highlighting the alignment between the two studies.
The VIT results closely replicated those of the earlier NLST, underscoring its potential to replicate real clinical imaging trials. Integration of virtual trials may aid in the evaluation and improvement of imaging-based diagnosis.
临床影像试验对于评估医学创新至关重要,但该过程效率低下、成本高昂且受到伦理限制。虚拟影像试验(VIT)方法通过模拟临床试验的各个组成部分来解决这些局限性。通过虚拟肺部筛查试验(VLST)对国家肺部筛查试验(NLST)进行的模拟展示了VIT在加快临床试验、降低受试者风险以及促进成像技术在临床环境中的优化使用方面的前景。
证明虚拟影像试验平台能够准确模拟一项主要的临床试验,特别是比较计算机断层扫描(CT)和胸部X线摄影(CXR)用于肺癌筛查的国家肺部筛查试验(NLST)。
设计、设置和参与者:从模拟NLST的人体模型(XCAT)中创建了一个由294名受试者组成的虚拟患者群体,其中包含两种类型的模拟癌性肺结节。队列中的每个虚拟患者都使用模拟CT和CXR系统进行评估,以生成反映NLST成像技术的图像。经过病变检测训练的深度学习模型,即人工智能CT阅读器和人工智能CXR阅读器,充当虚拟阅读器。
主要结局是CT和CXR模态的曲线下面积(AUC)的差异。
该研究分析了来自294名虚拟患者的配对CT和CXR模拟图像。在所有分析水平上,人工智能CT阅读器的表现均优于人工智能CXR阅读器。在患者水平上,CT表现出卓越的诊断性能,AUC为0.92(95%置信区间:0.90 - 0.95),而CXR的AUC为0.72(0.67 - 0.77)。病变类型的亚组分析显示,与异质性病变(AUC 0.89;0.86 - 0.93)相比,CT对均匀性病变的检测明显更好(AUC 0.97,95%置信区间:0.95 - 0.98)。此外,当将人工智能CT阅读器的特异性调整为与NLST中CT的94%敏感性相匹配时,VLST结果与NLST结果非常相似,进一步突出了两项研究之间的一致性。
VIT结果与早期NLST的结果非常相似,强调了其复制真实临床影像试验的潜力。虚拟试验的整合可能有助于基于成像的诊断的评估和改进。