Suppr超能文献

一种针对多层网络的广义特征向量中心性,该网络对相邻节点重要性具有层间约束。

A generalized eigenvector centrality for multilayer networks with inter-layer constraints on adjacent node importance.

作者信息

Frost H Robert

机构信息

Dartmouth College, Hanover, NH 03755 USA.

出版信息

Appl Netw Sci. 2024;9(1):14. doi: 10.1007/s41109-024-00620-8. Epub 2024 Apr 30.

Abstract

We present a novel approach for computing a variant of eigenvector centrality for multilayer networks with inter-layer constraints on node importance. Specifically, we consider a multilayer network defined by multiple edge-weighted, potentially directed, graphs over the same set of nodes with each graph representing one layer of the network and no inter-layer edges. As in the standard eigenvector centrality construction, the importance of each node in a given layer is based on the weighted sum of the importance of adjacent nodes in that same layer. Unlike standard eigenvector centrality, we assume that the adjacency relationship and the importance of adjacent nodes may be based on distinct layers. Importantly, this type of centrality constraint is only partially supported by existing frameworks for multilayer eigenvector centrality that use edges between nodes in different layers to capture inter-layer dependencies. For our model, constrained, layer-specific eigenvector centrality values are defined by a system of independent eigenvalue problems and dependent pseudo-eigenvalue problems, whose solution can be efficiently realized using an interleaved power iteration algorithm. We refer to this model, and the associated algorithm, as the Constrained Multilayer Centrality (CMLC) method. The characteristics of this approach, and of standard techniques based on inter-layer edges, are demonstrated on both a simple multilayer network and on a range of random graph models. An R package implementing the CMLC method along with example vignettes is available at https://hrfrost.host.dartmouth.edu/CMLC/.

摘要

我们提出了一种新颖的方法,用于计算具有节点重要性层间约束的多层网络的特征向量中心性变体。具体而言,我们考虑一个由多个边加权、可能有向的图定义的多层网络,这些图基于同一组节点,每个图代表网络的一层且不存在层间边。与标准特征向量中心性构建一样,给定层中每个节点的重要性基于该层中相邻节点重要性的加权和。与标准特征向量中心性不同的是,我们假设邻接关系和相邻节点的重要性可能基于不同的层。重要的是,现有的多层特征向量中心性框架仅部分支持这种类型的中心性约束,这些框架使用不同层中节点之间的边来捕获层间依赖性。对于我们的模型,受约束的、特定层的特征向量中心性值由一组独立的特征值问题和相关的伪特征值问题定义,其解可以使用交错幂迭代算法有效地实现。我们将此模型及相关算法称为约束多层中心性(CMLC)方法。在一个简单的多层网络和一系列随机图模型上展示了这种方法以及基于层间边的标准技术的特点。可在https://hrfrost.host.dartmouth.edu/CMLC/获取实现CMLC方法的R包以及示例 vignette。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75d9/11061051/bd59b64b2b36/41109_2024_620_Figa_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验