Suppr超能文献

机器学习预测肿瘤学环境中图表审查的记录:一种改善临床医生记录书写的概念验证策略。

Machine learning to predict notes for chart review in the oncology setting: a proof of concept strategy for improving clinician note-writing.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.

出版信息

J Am Med Inform Assoc. 2024 Jun 20;31(7):1578-1582. doi: 10.1093/jamia/ocae092.

Abstract

OBJECTIVE

Leverage electronic health record (EHR) audit logs to develop a machine learning (ML) model that predicts which notes a clinician wants to review when seeing oncology patients.

MATERIALS AND METHODS

We trained logistic regression models using note metadata and a Term Frequency Inverse Document Frequency (TF-IDF) text representation. We evaluated performance with precision, recall, F1, AUC, and a clinical qualitative assessment.

RESULTS

The metadata only model achieved an AUC 0.930 and the metadata and TF-IDF model an AUC 0.937. Qualitative assessment revealed a need for better text representation and to further customize predictions for the user.

DISCUSSION

Our model effectively surfaces the top 10 notes a clinician wants to review when seeing an oncology patient. Further studies can characterize different types of clinician users and better tailor the task for different care settings.

CONCLUSION

EHR audit logs can provide important relevance data for training ML models that assist with note-writing in the oncology setting.

摘要

目的

利用电子健康记录 (EHR) 审核日志开发机器学习 (ML) 模型,预测临床医生在查看肿瘤患者时想要查看的记录。

材料与方法

我们使用记录元数据和术语频率逆文档频率 (TF-IDF) 文本表示训练逻辑回归模型。我们使用精度、召回率、F1、AUC 和临床定性评估来评估性能。

结果

仅使用元数据的模型的 AUC 为 0.930,而同时使用元数据和 TF-IDF 的模型的 AUC 为 0.937。定性评估表明需要更好的文本表示,并进一步针对用户定制预测。

讨论

我们的模型有效地显示了临床医生在查看肿瘤患者时想要查看的前 10 条记录。进一步的研究可以描述不同类型的临床医生用户,并为不同的护理环境更好地定制任务。

结论

EHR 审核日志可以为培训 ML 模型提供重要的相关性数据,这些模型可以辅助肿瘤学环境中的记录书写。

相似文献

本文引用的文献

4
Patient Safety Issues From Information Overload in Electronic Medical Records.电子病历信息过载引发的患者安全问题。
J Patient Saf. 2022 Sep 1;18(6):e999-e1003. doi: 10.1097/PTS.0000000000001002. Epub 2022 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验