Institute of Movement and Neurosciences, Department of Exercise Neuroscience, German Sport University Cologne, Am Sportpark Müngersdorf 6, Cologne, D-50933, Germany.
Centre for Health and Integrative Physiology in Space (CHIPS), German Sport University, Cologne, Germany.
Brain Struct Funct. 2024 Jun;229(5):1265-1277. doi: 10.1007/s00429-024-02803-6. Epub 2024 May 3.
The plans of international space agencies to return to the Moon and explore deep space, including Mars, highlight the challenges of human adaptation and stress the need for a thorough analysis of the factors that facilitate, limit and modify human performance under extreme environments. This study investigates the influence of partial gravity on behavioural (error rate and reaction time) and neuronal parameters (event-related potentials) through parabolic flights. Brain cortical activity was assessed using EEG from 18 participants who solved a neurocognitive task, consisting of a mental arithmetic task and an auditory oddball paradigm, during Earth (1G), Lunar (0.16G + 0.25G) and Martian gravity (0.38G + 0.5G) for 15 consecutive parabolas. Data shows higher electrocortical activity in Earth gravity compared to Lunar and Martian gravity in the parietal lobe. No differences in participants' performance were found among the gravity levels. Event-related potentials displayed gravity-dependent variations, though limited stimuli recording suggests caution in interpretation. Data suggests a threshold between Earth and Martian gravity within the different gravities responsible for physiological changes, but it seems to vary greatly between individuals. The altered neuronal communication could be explained with a model developed by Kohn and Ritzmann in 2018. The increasing intracranial pressure in weightlessness changes the properties of the cell membrane of neurons and leads to a depolarisation of the resting membrane potential. The findings underscore the individuality of physiological changes in response to gravity alterations, signalling the need for further investigations in future studies.
国际太空机构计划重返月球并探索深空,包括火星,这凸显了人类适应的挑战,并强调需要彻底分析促进、限制和改变人类在极端环境下表现的因素。本研究通过抛物线飞行研究了部分重力对行为(错误率和反应时间)和神经元参数(事件相关电位)的影响。通过脑电图评估了 18 名参与者的大脑皮质活动,这些参与者在地球(1G)、月球(0.16G+0.25G)和火星重力(0.38G+0.5G)下连续进行 15 次抛物线飞行,解决了一项神经认知任务,包括心算任务和听觉异常范式。与月球和火星重力相比,数据显示在地球重力下大脑皮质活动更高。参与者在不同重力水平下的表现没有差异。事件相关电位显示出与重力相关的变化,但由于记录的刺激有限,在解释时需要谨慎。数据表明,在负责生理变化的不同重力之间存在一个介于地球和火星重力之间的阈值,但个体之间差异很大。这种改变的神经元通讯可以用 Kohn 和 Ritzmann 在 2018 年开发的模型来解释。在失重状态下,颅内压的增加改变了神经元细胞膜的特性,导致静息膜电位去极化。这些发现强调了对重力变化的生理反应的个体差异,表明需要在未来的研究中进一步调查。