Suppr超能文献

基于人工智能的眶黏膜相关淋巴组织淋巴瘤和 IgG4 相关眼病的苏木精-伊红图像的鉴别诊断。

Artificial intelligence-based differential diagnosis of orbital MALT lymphoma and IgG4 related ophthalmic disease using hematoxylin-eosin images.

机构信息

Department of Ophthalmology and Visual Sciences,, Graduate School of Medicine, Osaka Metropolitan University, 1-5-7 Asahimachi, Abeno-Ku, Osaka-Shi, Osaka, 545-8586, Japan.

Ophthalmology Department and Eye Center, Kobe Kaisei Hospital, Kobe, Hyogo, Japan.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2024 Oct;262(10):3355-3366. doi: 10.1007/s00417-024-06501-1. Epub 2024 May 3.

Abstract

PURPOSE

To investigate the possibility of distinguishing between IgG4-related ophthalmic disease (IgG4-ROD) and orbital MALT lymphoma using artificial intelligence (AI) and hematoxylin-eosin (HE) images.

METHODS

After identifying a total of 127 patients from whom we were able to procure tissue blocks with IgG4-ROD and orbital MALT lymphoma, we performed histological and molecular genetic analyses, such as gene rearrangement. Subsequently, pathological HE images were collected from these patients followed by the cutting out of 10 different image patches from the HE image of each patient. A total of 970 image patches from the 97 patients were used to construct nine different models of deep learning, and the 300 image patches from the remaining 30 patients were used to evaluate the diagnostic performance of the models. Area under the curve (AUC) and accuracy (ACC) were used for the performance evaluation of the deep learning models. In addition, four ophthalmologists performed the binary classification between IgG4-ROD and orbital MALT lymphoma.

RESULTS

EVA, which is a vision-centric foundation model to explore the limits of visual representation, was the best deep learning model among the nine models. The results of EVA were ACC = 73.3% and AUC = 0.807. The ACC of the four ophthalmologists ranged from 40 to 60%.

CONCLUSIONS

It was possible to construct an AI software based on deep learning that was able to distinguish between IgG4-ROD and orbital MALT. This AI model may be useful as an initial screening tool to direct further ancillary investigations.

摘要

目的

利用人工智能(AI)和苏木精-伊红(HE)图像来探索区分 IgG4 相关眼病(IgG4-ROD)和眼眶粘膜相关淋巴组织(MALT)淋巴瘤的可能性。

方法

共从 127 名患者中识别出 IgG4-ROD 和眼眶 MALT 淋巴瘤患者,对这些患者进行组织学和分子遗传学分析,如基因重排。随后,从这些患者中收集组织学 HE 图像,并从每位患者的 HE 图像中裁剪出 10 个不同的图像块。共从 97 名患者中获取 970 个图像块来构建 9 种不同的深度学习模型,其余 30 名患者的 300 个图像块用于评估模型的诊断性能。曲线下面积(AUC)和准确性(ACC)用于评估深度学习模型的性能。此外,4 名眼科医生对 IgG4-ROD 和眼眶 MALT 淋巴瘤进行了二进制分类。

结果

EVA 是一种以视觉为中心的基础模型,用于探索视觉表示的极限,是 9 种模型中表现最好的深度学习模型。EVA 的结果为 ACC=73.3%和 AUC=0.807。4 名眼科医生的 ACC 范围在 40%至 60%之间。

结论

可以构建一种基于深度学习的 AI 软件,用于区分 IgG4-ROD 和眼眶 MALT。这种 AI 模型可以作为一种初步筛选工具,以指导进一步的辅助检查。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验