Suppr超能文献

多巴胺 D2 自我调节在超日周期节律产生中的作用的数学模型。

A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms.

机构信息

Department of Psychology, University of Toronto, Toronto, Ontario, Canada.

Department of Mathematics, University of Toronto, Toronto, Ontario, Canada.

出版信息

PLoS Comput Biol. 2024 May 3;20(5):e1012082. doi: 10.1371/journal.pcbi.1012082. eCollection 2024 May.

Abstract

Many self-motivated and goal-directed behaviours display highly flexible, approximately 4 hour ultradian (shorter than a day) oscillations. Despite lacking direct correspondence to physical cycles in the environment, these ultradian rhythms may be involved in optimizing functional interactions with the environment and reflect intrinsic neural dynamics. Current evidence supports a role of mesostriatal dopamine (DA) in the expression and propagation of ultradian rhythmicity, however, the biochemical processes underpinning these oscillations remain to be identified. Here, we use a mathematical model to investigate D2 autoreceptor-dependent DA self-regulation as the source of ultradian behavioural rhythms. DA concentration at the midbrain-striatal synapses is governed through a dual-negative feedback-loop structure, which naturally gives rise to rhythmicity. This model shows the propensity of striatal DA to produce an ultradian oscillation characterized by a flexible period that is highly sensitive to parameter variations. Circadian (approximately 24 hour) regulation consolidates the ultradian oscillations and alters their response to the phase-dependent, rapid-resetting effect of a transient excitatory stimulus. Within a circadian framework, the ultradian rhythm orchestrates behavioural activity and enhances responsiveness to an external stimulus. This suggests a role for the circadian-ultradian timekeeping hierarchy in governing organized behaviour and shaping daily experience through coordinating the motivation to engage in recurring, albeit not highly predictable events, such as social interactions.

摘要

许多自发的、目标导向的行为表现出高度灵活的、大约 4 小时超短周期(短于一天)的波动。尽管这些超短周期与环境中的物理周期没有直接对应关系,但它们可能参与了优化与环境的功能交互,并反映了内在的神经动力学。目前的证据支持中脑-纹状体多巴胺(DA)在超短周期节律的表达和传播中的作用,然而,支持这些波动的生化过程仍有待确定。在这里,我们使用一个数学模型来研究 D2 自身受体依赖性 DA 自我调节作为超短周期行为节律的来源。中脑-纹状体突触处的 DA 浓度通过双负反馈环结构来控制,这种结构自然会产生节律性。该模型显示了纹状体 DA 产生超短周期波动的倾向,其特征是具有灵活的周期,对参数变化高度敏感。(昼夜节律(约 24 小时)调节巩固了超短周期的波动,并改变了它们对短暂兴奋刺激的、与相位相关的快速重置效应的反应。在昼夜节律框架内,超短周期节律协调行为活动,并增强了对外界刺激的反应性。这表明,昼夜节律-超短周期计时层次结构在调节有组织的行为和通过协调参与重复但并非高度可预测的事件(如社交互动)的动机,来塑造日常体验方面发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验