Suppr超能文献

昼夜节律与多巴胺的数学模型。

A mathematical model of circadian rhythms and dopamine.

作者信息

Kim Ruby, Reed Michael C

机构信息

Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, 27708, NC, USA.

出版信息

Theor Biol Med Model. 2021 Feb 17;18(1):8. doi: 10.1186/s12976-021-00139-w.

Abstract

BACKGROUND

The superchiasmatic nucleus (SCN) serves as the primary circadian (24hr) clock in mammals and is known to control important physiological functions such as the sleep-wake cycle, hormonal rhythms, and neurotransmitter regulation. Experimental results suggest that some of these functions reciprocally influence circadian rhythms, creating a highly complex network. Among the clock's downstream products, orphan nuclear receptors REV-ERB and ROR are particularly interesting because they coordinately modulate the core clock circuitry. Recent experimental evidence shows that REV-ERB and ROR are not only crucial for lipid metabolism but are also involved in dopamine (DA) synthesis and degradation, which could have meaningful clinical implications for conditions such as Parkinson's disease and mood disorders.

METHODS

We create a mathematical model consisting of differential equations that express how the circadian variables are influenced by light, how REV-ERB and ROR feedback to the clock, and how REV-ERB, ROR, and BMAL1-CLOCK affect the dopaminergic system. The structure of the model is based on the findings of experimentalists.

RESULTS

We compare our model predictions to experimental data on clock components in different light-dark conditions and in the presence of genetic perturbations. Our model results are consistent with experimental results on REV-ERB and ROR and allow us to predict the circadian variations in tyrosine hydroxylase and monoamine oxidase seen in experiments. By connecting our model to an extant model of dopamine synthesis, release, and reuptake, we are able to predict circadian oscillations in extracellular DA and homovanillic acid that correspond well with experimental observations.

CONCLUSIONS

The predictions of the mathematical model are consistent with a wide variety of experimental observations. Our calculations show that the mechanisms proposed by experimentalists by which REV-ERB, ROR, and BMAL1-CLOCK influence the DA system are sufficient to explain the circadian oscillations observed in dopaminergic variables. Our mathematical model can be used for further investigations of the effects of the mammalian circadian clock on the dopaminergic system. The model can also be used to predict how perturbations in the circadian clock disrupt the dopaminergic system and could potentially be used to find drug targets that ameliorate these disruptions.

摘要

背景

视交叉上核(SCN)是哺乳动物的主要昼夜节律(24小时)时钟,已知其控制重要的生理功能,如睡眠-觉醒周期、激素节律和神经递质调节。实验结果表明,其中一些功能相互影响昼夜节律,形成一个高度复杂的网络。在时钟的下游产物中,孤儿核受体REV-ERB和ROR特别有趣,因为它们协同调节核心时钟电路。最近的实验证据表明,REV-ERB和ROR不仅对脂质代谢至关重要,还参与多巴胺(DA)的合成和降解,这可能对帕金森病和情绪障碍等疾病具有重要的临床意义。

方法

我们创建了一个由微分方程组成的数学模型,该模型表达了昼夜节律变量如何受光影响、REV-ERB和ROR如何反馈至时钟,以及REV-ERB、ROR和BMAL1-CLOCK如何影响多巴胺能系统。该模型的结构基于实验人员的研究结果。

结果

我们将模型预测结果与不同明暗条件下以及存在基因扰动时关于时钟组件的实验数据进行比较。我们的模型结果与关于REV-ERB和ROR的实验结果一致,并使我们能够预测实验中观察到的酪氨酸羟化酶和单胺氧化酶的昼夜变化。通过将我们的模型与现有的多巴胺合成、释放和再摄取模型相连接,我们能够预测细胞外DA和高香草酸的昼夜振荡,这与实验观察结果非常吻合。

结论

数学模型的预测结果与各种实验观察结果一致。我们的计算表明实验人员提出的REV-ERB、ROR和BMAL1-CLOCK影响DA系统的机制足以解释在多巴胺能变量中观察到的昼夜振荡。我们的数学模型可用于进一步研究哺乳动物昼夜节律时钟对多巴胺能系统的影响。该模型还可用于预测昼夜节律时钟的扰动如何破坏多巴胺能系统,并有可能用于寻找改善这些破坏的药物靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec9/7891144/a8c877d40d0e/12976_2021_139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验