Chen Weijie, Zhang Dianwei, Fu Hongwei, Li Jinfan, Yu Xinzhi, Zhou Jiang, Lu Bingan
School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China.
Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, Guangdong Province 511300, China.
ACS Nano. 2024 May 14;18(19):12512-12523. doi: 10.1021/acsnano.4c02108. Epub 2024 May 3.
Ether-based electrolytes are among the most important electrolytes for potassium-ion batteries (PIBs) due to their low polarization voltage and notable compatibility with potassium metal. However, their development is hindered by the strong binding between K and ether solvents, leading to [K-solvent] cointercalation on graphite anodes. Herein, we propose a partially and weakly solvating electrolyte (PWSE) wherein the local solvation environment of the conventional 1,2-dimethoxyethane (DME)-based electrolyte is efficiently reconfigured by a partially and weakly solvating diethoxy methane (DEM) cosolvent. For the PWSE in particular, DEM partially participates in the solvation shell and weakens the chelation between K and DME, facilitating desolvation and suppressing cointercalation behavior. Notably, the solvation structure of the DME-based electrolyte is transformed into a more cation-anion-cluster-dominated structure, consequently promoting thin and stable solid-electrolyte interphase (SEI) generation. Benefiting from optimized solvation and SEI generation, the PWSE enables a graphite electrode with reversible K (de)intercalation (for over 1000 cycles) and K with reversible plating/stripping (the K||Cu cell with an average Coulombic efficiency of 98.72% over 400 cycles) and dendrite-free properties (the K||K cell operates over 1800 h). We demonstrate that rational PWSE design provides an approach to tailoring electrolytes toward stable PIBs.
基于醚的电解质因其低极化电压以及与钾金属显著的兼容性,成为钾离子电池(PIB)最重要的电解质之一。然而,钾与醚类溶剂之间的强结合阻碍了它们的发展,导致在石墨阳极上发生[K-溶剂]共嵌入。在此,我们提出一种部分弱溶剂化电解质(PWSE),其中传统的基于1,2-二甲氧基乙烷(DME)的电解质的局部溶剂化环境通过部分弱溶剂化的二乙氧基甲烷(DEM)共溶剂得到有效重构。特别是对于PWSE,DEM部分参与溶剂化壳层,削弱了钾与DME之间的螯合作用,促进去溶剂化并抑制共嵌入行为。值得注意的是,基于DME的电解质的溶剂化结构转变为以阳离子-阴离子簇为主导的结构,从而促进薄且稳定的固体电解质界面(SEI)的生成。受益于优化的溶剂化和SEI生成,PWSE使石墨电极能够进行可逆的钾(脱)嵌入(超过1000次循环)以及钾的可逆电镀/剥离(K||Cu电池在400次循环中平均库仑效率为98.72%),并且具有无枝晶特性(K||K电池运行超过1800小时)。我们证明,合理的PWSE设计为定制稳定的PIB电解质提供了一种方法。