Finkbeiner Jan, Tovey Samuel, Holm Christian
Peter Grünberg Institute Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße, 52428 Jülich, Germany.
Institute for Computational Physics University of Stuttgart Allmandring 3, 70569 Stuttgart, Germany.
Phys Rev Lett. 2024 Apr 19;132(16):167301. doi: 10.1103/PhysRevLett.132.167301.
This Letter presents a novel approach for identifying uncorrelated atomic configurations from extensive datasets with a nonstandard neural network workflow known as random network distillation (RND) for training machine-learned interatomic potentials (MLPs). This method is coupled with a DFT workflow wherein initial data are generated with cheaper classical methods before only the minimal subset is passed to a more computationally expensive ab initio calculation. This benefits training not only by reducing the number of expensive DFT calculations required but also by providing a pathway to the use of more accurate quantum mechanical calculations. The method's efficacy is demonstrated by constructing machine-learned interatomic potentials for the molten salts KCl and NaCl. Our RND method allows accurate models to be fit on minimal datasets, as small as 32 configurations, reducing the required structures by at least 1 order of magnitude compared to alternative methods. This reduction in dataset sizes not only substantially reduces computational overhead for training data generation but also provides a more comprehensive starting point for active-learning procedures.
本信函提出了一种新颖的方法,可通过一种名为随机网络蒸馏(RND)的非标准神经网络工作流程,从大量数据集中识别不相关的原子构型,用于训练机器学习原子间势(MLP)。该方法与密度泛函理论(DFT)工作流程相结合,即在仅将最小子集传递给计算成本更高的从头计算之前,先用成本较低的经典方法生成初始数据。这不仅通过减少所需的昂贵DFT计算数量来促进训练,还提供了一条使用更精确量子力学计算的途径。通过构建熔盐KCl和NaCl的机器学习原子间势,证明了该方法的有效性。我们的RND方法允许在最小数据集(小至32种构型)上拟合精确模型,与其他方法相比,所需结构减少了至少一个数量级。数据集大小的这种减少不仅大大降低了训练数据生成的计算开销,还为主动学习程序提供了更全面的起点。