Chemical and Fuel Cycle Technologies Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
School of Electrical, Computer, Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
J Chem Phys. 2023 Jul 14;159(2). doi: 10.1063/5.0153021.
Machine learning interatomic potentials have emerged as a powerful tool for bypassing the spatiotemporal limitations of ab initio simulations, but major challenges remain in their efficient parameterization. We present AL4GAP, an ensemble active learning software workflow for generating multicomposition Gaussian approximation potentials (GAP) for arbitrary molten salt mixtures. The workflow capabilities include: (1) setting up user-defined combinatorial chemical spaces of charge neutral mixtures of arbitrary molten mixtures spanning 11 cations (Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba and two heavy species, Nd, and Th) and 4 anions (F, Cl, Br, and I), (2) configurational sampling using low-cost empirical parameterizations, (3) active learning for down-selecting configurational samples for single point density functional theory calculations at the level of Strongly Constrained and Appropriately Normed (SCAN) exchange-correlation functional, and (4) Bayesian optimization for hyperparameter tuning of two-body and many-body GAP models. We apply the AL4GAP workflow to showcase high throughput generation of five independent GAP models for multicomposition binary-mixture melts, each of increasing complexity with respect to charge valency and electronic structure, namely: LiCl-KCl, NaCl-CaCl2, KCl-NdCl3, CaCl2-NdCl3, and KCl-ThCl4. Our results indicate that GAP models can accurately predict structure for diverse molten salt mixture with density functional theory (DFT)-SCAN accuracy, capturing the intermediate range ordering characteristic of the multivalent cationic melts.
机器学习原子间势已成为克服从头算模拟时空限制的强大工具,但在其有效参数化方面仍存在重大挑战。我们提出了 AL4GAP,这是一种用于生成任意熔融盐混合物的多成分高斯逼近势(GAP)的集成主动学习软件工作流程。该工作流程的功能包括:(1)为任意熔融混合物的电荷中性混合物设置用户定义的组合化学空间,涵盖 11 种阳离子(Li、Na、K、Rb、Cs、Mg、Ca、Sr、Ba 和两种重元素,Nd 和 Th)和 4 种阴离子(F、Cl、Br 和 I);(2)使用低成本经验参数化进行构型采样;(3)主动学习,以便在 Strongly Constrained and Appropriately Normed(SCAN)交换相关泛函的单点密度泛函理论计算中对构型样本进行向下选择;(4)用于双体和多体 GAP 模型的超参数调整的贝叶斯优化。我们应用 AL4GAP 工作流程来展示用于多成分二元混合物熔体的五个独立 GAP 模型的高通量生成,每个模型相对于电荷价态和电子结构的复杂性都在增加,分别是:LiCl-KCl、NaCl-CaCl2、KCl-NdCl3、CaCl2-NdCl3 和 KCl-ThCl4。我们的结果表明,GAP 模型可以以密度泛函理论(DFT)-SCAN 精度准确预测具有不同结构的熔融盐混合物的结构,捕捉多价阳离子熔体的中间范围有序特征。