Suppr超能文献

通过疏水深共晶溶剂的疏油膜进行无水挥发性脂肪酸提取:机理理解和未来展望。

Anhydrous volatile fatty acid extraction through omniphobic membranes by hydrophobic deep eutectic solvents: Mechanistic understanding and future perspective.

机构信息

Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.

Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40546, United States.

出版信息

Water Res. 2024 Jun 15;257:121654. doi: 10.1016/j.watres.2024.121654. Epub 2024 Apr 21.

Abstract

Volatile fatty acids (VFAs) derived from arrested anaerobic digestion (AD) can be recovered as a valuable commodity for value-added synthesis. However, separating VFAs from digestate with complex constituents and a high-water content is an energy-prohibitive process. This study developed an innovative technology to overcome this barrier by integrating deep eutectic solvents (DESs) with an omniphobic membrane into a membrane contactor for efficient extraction of anhydrous VFAs with low energy consumption. A kinetic model was developed to elucidate the mechanistic differences between this novel omniphobic membrane-enabled DES extraction and the previous hydrophobic membrane-enabled NaOH extraction. Experimental results and mechanistic modeling suggested that VFA extraction by the DES is a reversible adsorption process facilitating subsequent VFA separation via anhydrous distillation. High vapor pressure of shorter-chain VFAs and low Nernst distribution coefficients of longer-chain VFAs contributed to DES-driven extraction, which could enable continuous and in-situ recovery and conversion of VFAs from AD streams.

摘要

挥发性脂肪酸(VFAs)来源于被抑制的厌氧消化(AD),可以作为有价值的商品回收,用于增值合成。然而,从含有复杂成分和高含水量的消化物中分离 VFAs 是一个耗费能源的过程。本研究开发了一种创新技术,通过将深共晶溶剂(DESs)与疏油膜集成到膜接触器中,以低能耗高效提取无水 VFAs,从而克服这一障碍。建立了一个动力学模型,以阐明这种新型疏油膜增强的 DES 提取与之前的疏水膜增强的 NaOH 提取之间的机理差异。实验结果和机理建模表明,DES 对 VFA 的提取是一种可逆的吸附过程,有利于通过无水蒸馏进行后续的 VFA 分离。短链 VFAs 的高蒸气压和长链 VFAs 的低能斯特分配系数有助于 DES 驱动的提取,这可以实现 AD 流中 VFAs 的连续和原位回收和转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验