State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China; University of Groningen and University Medical Center Groningen, Department of Biomaterials & Biomedical Technology, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands.
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, PR China.
Acta Biomater. 2024 Jun;181:347-361. doi: 10.1016/j.actbio.2024.04.045. Epub 2024 May 1.
Cascade-reaction containers generating reactive oxygen species (ROS) as an alternative for antibiotic-based strategies for bacterial infection control, require endogenous oxygen-sources and ROS-generation close to or preferably inside target bacteria. Here, this is achieved by cetyltrimethylammonium-chloride (CTAC) assisted in situ metabolic labeling and incorporation of mesoporous SiO-nanoparticles, dual-loaded with glucose-oxidase and FeO-nanoparticles as cascade-reaction containers, inside bacterial cell walls. First, azide-functionalized d-alanine (D-Ala-N) was inserted in cell wall peptidoglycan layers of growing Gram-positive pathogens. In Gram-negatives, this could only be achieved after outer lipid-membrane permeabilization, using a low concentration of CTAC. Low concentrations of CTAC had no adverse effect on in vitro blood clotting or hemolysis nor on the health of mice when blood-injected. Next, dibenzocyclooctyne-polyethylene-glycol modified, SiO-nanoparticles were in situ click-reacted with d-Ala-N in bacterial cell wall peptidoglycan layers. Herewith, a two-step cascade-reaction is facilitated inside bacteria, in which glucose-oxidase generates HO at endogenously-available glucose concentrations, while subsequently FeO-nanoparticles catalyze generation of •OH from the HO generated. Generation of •OH inside bacterial cell walls by dual-loaded mesoporous SiO-nanoparticles yielded more effective in vitro killing of both planktonic Gram-positive and Gram-negative bacteria suspended in 10 % plasma than SiO-nanoparticles solely loaded with glucose-oxidase. Gram-positive or Gram-negative bacterially induced sepsis in mice could be effectively treated by in situ pre-treatment with tail-vein injected CTAC and d-Ala-N, followed by injection of dual-loaded cascade-reaction containers without using antibiotics. This makes in situ metabolic incorporation of cascade-reaction containers as described attractive for further investigation with respect to the control of other types of infections comprising planktonic bacteria. STATEMENT OF SIGNIFICANCE: In situ metabolic-incorporation of cascade-reaction-containers loaded with glucose-oxidase and FeO nanoparticles into bacterial cell-wall peptidoglycan is described, yielding ROS-generation from endogenous glucose, non-antibiotically killing bacteria before ROS inactivates. Hitherto, only Gram-positives could be metabolically-labeled, because Gram-negatives possess two lipid-membranes. The outer membrane impedes direct access to the peptidoglycan. This problem was solved by outer-membrane permeabilization using a quaternary-ammonium compound. Several studies on metabolic-labeling perform crucial labeling steps during bacterial-culturing that in real-life should be part of a treatment. In situ metabolic-incorporation as described, can be applied in well-plates during in vitro experiments or in the body as during in vivo animal experiments. Surprisingly, metabolic-incorporation proceeded unhampered in blood and a murine, bacterially-induced sepsis could be well treated.
作为基于抗生素的细菌感染控制策略的替代方案,级联反应容器生成活性氧 (ROS) 需要内源性氧源和 ROS 生成接近或优选在靶细菌内部。在这里,通过十六烷基三甲基氯化铵 (CTAC) 辅助原位代谢标记和负载葡萄糖氧化酶和 FeO 纳米颗粒的介孔 SiO2 纳米粒子的双重负载来实现这一点,作为级联反应容器,位于细菌细胞壁内。首先,叠氮功能化 D-丙氨酸 (D-Ala-N) 被插入生长中的革兰氏阳性病原体的细胞壁肽聚糖层中。在革兰氏阴性菌中,只有在外膜通透性后,使用低浓度的 CTAC 才能实现。低浓度的 CTAC 对体外凝血或溶血没有不良影响,也不会对注射血液的小鼠的健康产生影响。接下来,二苯并环辛炔聚乙二醇修饰的 SiO2 纳米粒子与细菌细胞壁肽聚糖层中的 D-Ala-N 进行原位点击反应。由此,在细菌内部促进了两步级联反应,其中葡萄糖氧化酶在内源性可用葡萄糖浓度下生成 HO,而随后 FeO 纳米颗粒催化从生成的 HO 生成•OH。负载葡萄糖氧化酶的介孔 SiO2 纳米粒子内部生成的•OH 导致悬浮在 10%血浆中的浮游革兰氏阳性和革兰氏阴性细菌的体外杀伤效果比单独负载葡萄糖氧化酶的 SiO2 纳米粒子更有效。通过尾静脉注射 CTAC 和 D-Ala-N 对小鼠进行原位预处理,然后注射负载级联反应容器,而不使用抗生素,可有效治疗革兰氏阳性或革兰氏阴性菌诱导的败血症。这种原位代谢掺入级联反应容器的方法为控制包括浮游细菌在内的其他类型的感染提供了进一步的研究前景。
本文描述了将负载葡萄糖氧化酶和 FeO 纳米颗粒的级联反应容器原位代谢掺入细菌细胞壁肽聚糖中,从内源性葡萄糖中产生 ROS,在 ROS 使细菌失活之前非抗生素杀死细菌。迄今为止,只有革兰氏阳性菌可以进行代谢标记,因为革兰氏阴性菌具有两层脂质膜。外膜阻碍了与肽聚糖的直接接触。通过使用季铵化合物对外膜进行通透性处理来解决此问题。代谢标记的几项研究在细菌培养过程中进行了至关重要的标记步骤,而在实际生活中,这些步骤应该是治疗的一部分。如前所述,原位代谢掺入可以在平板中进行体外实验,也可以在体内进行,例如在体内动物实验中。令人惊讶的是,代谢掺入在血液中不受阻碍,并且可以很好地治疗由细菌引起的小鼠败血症。