Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, United States.
Division of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, United States.
Am J Clin Nutr. 2024 May;119(5):1301-1308. doi: 10.1016/j.ajcnut.2024.02.014. Epub 2024 Apr 11.
There are few resources available for researchers aiming to conduct 24-h dietary record and recall analysis using R.
We aimed to develop DietDiveR, which is a toolkit of functions written in R for the analysis of recall or record data collected with the Automated Self-Administered 24-h Dietary Assessment Tool or 2-d 24-h dietary recall data from the National Health and Nutrition Examination Survey (NHANES). The R functions are intended for food and nutrition researchers who are not computational experts.
DietDiveR provides users with functions to 1) clean dietary data, 2) analyze 24-h dietary intakes in relation to other study-specific metadata variables, 3) visualize percentages of energy intake from macronutrients, 4) perform principal component analysis or k-means clustering to group participants by similar data-driven dietary patterns, 5) generate foodtrees based on the hierarchical food group information for food items consumed, 6) perform principal coordinate analysis taking food grouping information into account, and 7) calculate diversity metrics for overall diet and specific food groups. DietDiveR includes a self-paced tutorial on a website (https://computational-nutrition-lab.github.io/DietDiveR/). As a demonstration, we applied DietDiveR to a demonstration data set and data from NHANES 2015-2016 to derive a dietary diversity measure of nuts, seeds, and legumes consumption.
Adult participants in the NHANES 2015-2016 cycle were grouped depending on the diversity in their mean consumption of nuts, seeds, and legumes. The group with the highest diversity in nuts, seeds, and legumes consumption had 3.8 cm lower waist circumference (95% confidence interval: 1.0, 6.5) than those who did not consume nuts, seeds, and legumes.
DietDiveR enables users to visualize dietary data and conduct data-driven dietary pattern analyses using R to answer research questions regarding diet. As a demonstration of this toolkit, we explored the diversity of nuts, seeds, and legumes consumption to highlight some of the ways DietDiveR can be used for analyses of dietary diversity.
对于希望使用 R 进行 24 小时膳食记录和回忆分析的研究人员来说,可用的资源很少。
我们旨在开发 DietDiveR,这是一个用 R 编写的功能工具包,用于分析使用自动自我管理 24 小时膳食评估工具或来自国家健康和营养检查调查(NHANES)的 2 天 24 小时膳食回忆数据收集的回忆或记录数据。这些 R 函数面向不是计算专家的食品和营养研究人员。
DietDiveR 为用户提供了以下功能:1)清理膳食数据;2)分析 24 小时膳食摄入量与其他特定于研究的元数据变量的关系;3)可视化宏量营养素能量摄入的百分比;4)执行主成分分析或 k-均值聚类,根据相似的数据驱动膳食模式对参与者进行分组;5)基于消耗食物的分层食物组信息生成食物树;6)考虑食物分组信息执行主坐标分析;7)计算整体饮食和特定食物组的多样性指标。DietDiveR 在一个网站(https://computational-nutrition-lab.github.io/DietDiveR/)上提供了一个自我指导的教程。作为演示,我们将 DietDiveR 应用于一个演示数据集和来自 NHANES 2015-2016 年的数据,得出坚果、种子和豆类消耗的饮食多样性衡量标准。
根据坚果、种子和豆类平均消耗的多样性,将 NHANES 2015-2016 周期的成年参与者分组。坚果、种子和豆类消耗多样性最高的组的腰围比不消耗坚果、种子和豆类的组低 3.8 厘米(95%置信区间:1.0,6.5)。
DietDiveR 使用户能够使用 R 可视化膳食数据并进行数据驱动的膳食模式分析,以回答有关饮食的研究问题。作为该工具包的演示,我们探索了坚果、种子和豆类消耗的多样性,以突出 DietDiveR 可用于分析饮食多样性的一些方式。