Department of Medicine, University of Wisconsin School of Medicine and Health, Madison, Wisconsin, USA.
Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Ann Rheum Dis. 2024 Aug 27;83(9):1169-1180. doi: 10.1136/ard-2023-224936.
Sjögren disease (SjD) diagnosis often requires either positive anti-SSA antibodies or a labial salivary gland biopsy with a positive focus score (FS). One-third of patients with SjD lack anti-SSA antibodies (SSA-), requiring a positive FS for diagnosis. Our objective was to identify novel autoantibodies to diagnose 'seronegative' SjD.
IgG binding to a high-density whole human peptidome array was quantified using sera from SSA- SjD cases and matched non-autoimmune controls. We identified the highest bound peptides using empirical Bayesian statistical filters, which we confirmed in an independent cohort comprising SSA- SjD (n=76), sicca-controls without autoimmunity (n=75) and autoimmune-feature controls (SjD features but not meeting SjD criteria; n=41). In this external validation, we used non-parametric methods for binding abundance and controlled false discovery rate in group comparisons. For predictive modelling, we used logistic regression, model selection methods and cross-validation to identify clinical and peptide variables that predict SSA- SjD and FS positivity.
IgG against a peptide from D-aminoacyl-tRNA deacylase (DTD2) bound more in SSA- SjD than sicca-controls (p=0.004) and combined controls (sicca-controls and autoimmune-feature controls combined; p=0.003). IgG against peptides from retroelement silencing factor-1 and DTD2 were bound more in FS-positive than FS-negative participants (p=0.010; p=0.012). A predictive model incorporating clinical variables showed good discrimination between SjD versus control (area under the curve (AUC) 74%) and between FS-positive versus FS-negative (AUC 72%).
We present novel autoantibodies in SSA- SjD that have good predictive value for SSA- SjD and FS positivity.
干燥综合征(SjD)的诊断通常需要抗 SSA 抗体阳性或唇腺活检阳性灶评分(FS)。三分之一的 SjD 患者缺乏抗 SSA 抗体(SSA-),需要 FS 阳性才能诊断。我们的目的是确定新型自身抗体以诊断“血清阴性”SjD。
使用来自 SSA- SjD 病例和匹配的非自身免疫对照的血清,定量测定 IgG 与高密度全人类肽组阵列的结合。我们使用经验贝叶斯统计滤波器确定结合最高的肽,并用包含 SSA- SjD(n=76)、无自身免疫干燥综合征对照(n=75)和自身免疫特征对照(具有 SjD 特征但不符合 SjD 标准;n=41)的独立队列进行验证。在外部验证中,我们使用非参数方法进行结合丰度比较,并在组比较中控制假发现率。对于预测模型,我们使用逻辑回归、模型选择方法和交叉验证来识别预测 SSA- SjD 和 FS 阳性的临床和肽变量。
针对 D-氨酰-tRNA 脱酰酶(DTD2)的 IgG 在 SSA- SjD 中比干燥综合征对照(p=0.004)和联合对照(干燥综合征对照和自身免疫特征对照联合;p=0.003)结合更多。针对逆转录因子沉默因子-1 和 DTD2 肽的 IgG 在 FS 阳性者中比 FS 阴性者结合更多(p=0.010;p=0.012)。纳入临床变量的预测模型在 SjD 与对照(曲线下面积(AUC)74%)和 FS 阳性与 FS 阴性(AUC 72%)之间具有良好的区分能力。
我们提出了 SSA- SjD 中的新型自身抗体,它们对 SSA- SjD 和 FS 阳性具有良好的预测价值。