Suppr超能文献

利用开源编程语言 Python 为细胞学的诊断和筛查性能创建交互式质量保证仪表板。

Utilizing the open-source programming language Python to create interactive Quality Assurance dashboards for diagnostic and screening performance in Cytology.

机构信息

Eurofins-Medserv Ltd, Budapest, Hungary.

Eurofins-Medserv Ltd, Budapest, Hungary.

出版信息

J Am Soc Cytopathol. 2024 Jul-Aug;13(4):309-318. doi: 10.1016/j.jasc.2024.03.007. Epub 2024 Apr 5.

Abstract

INTRODUCTION

Effective feedback on cytology performance relies on navigating complex laboratory information system data, which is prone to errors and lacks flexibility. As a comprehensive solution, we used the Python programming language to create a dashboard application for screening and diagnostic quality metrics.

MATERIALS AND METHODS

Data from the 5-year period (2018-2022) were accessed. Versatile open-source Python libraries (user developed program code packages) were used from the first step of LIS data cleaning through the creation of the application. To evaluate performance, we selected 3 gynecologic metrics: the ASC/LSIL ratio, the ASC-US/ASC-H ratio, and the proportion of cytologic abnormalities in comparison to the total number of cases (abnormal rate). We also evaluated the referral rate of cytologists/cytotechnologists (CTs) and the ratio of thyroid AUS interpretations by cytopathologists (CPs). These were formed into colored graphs that showcase individual results in established, color-coded laboratory "goal," "borderline," and "attention" zones based on published reference benchmarks. A representation of the results distribution for the entire laboratory was also developed.

RESULTS

We successfully created a web-based test application that presents interactive dashboards with different interfaces for the CT, CP, and laboratory management (https://drkvcsstvn-dashboards.hf.space/app). The user can choose to view the desired quality metric, year, and the anonymized CT or CP, with an additional automatically generated written report of results.

CONCLUSIONS

Python programming proved to be an effective toolkit to ensure high-level data processing in a modular and reproducible way to create a personalized, laboratory specific cytology dashboard.

摘要

简介

有效的细胞学性能反馈依赖于对复杂实验室信息系统数据的导航,而这些数据容易出错且缺乏灵活性。作为一种全面的解决方案,我们使用 Python 编程语言为筛查和诊断质量指标创建了一个仪表板应用程序。

材料与方法

我们访问了 5 年(2018-2022 年)的数据。从第一步的 LIS 数据清理到应用程序的创建,我们使用了多功能的开源 Python 库(用户开发的程序代码包)。为了评估性能,我们选择了 3 项妇科指标:ASC/LSIL 比值、ASC-US/ASC-H 比值以及细胞学异常与总病例数的比例(异常率)。我们还评估了细胞学专家/细胞技术人员(CT)的转诊率以及细胞病理学家(CP)对甲状腺 AUS 解释的比例。这些指标以彩色图形的形式展示,根据已发表的参考基准,将个人结果分为实验室的既定、彩色编码的“目标”、“边界”和“关注”区域。还开发了整个实验室结果分布的表示形式。

结果

我们成功创建了一个基于网络的测试应用程序,该应用程序提供了具有不同界面的交互式仪表板,供 CT、CP 和实验室管理使用(https://drkvcsstvn-dashboards.hf.space/app)。用户可以选择查看所需的质量指标、年份以及匿名化的 CT 或 CP,并自动生成结果的书面报告。

结论

Python 编程被证明是一种有效的工具包,可以以模块化和可重复的方式确保高水平的数据处理,从而创建个性化的、特定于实验室的细胞学仪表板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验