School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia.
Burnet Institute, Melbourne, Australia.
Protoplasma. 2024 Sep;261(5):1073-1092. doi: 10.1007/s00709-024-01953-y. Epub 2024 May 4.
Phytophthora cinnamomi is an oomycete plant pathogen with a host range of almost 5000 plant species worldwide and therefore poses a serious threat to biodiversity. Omics technology has provided significant progress in our understanding of oomycete biology, however, transformation studies of Phytophthora for gene functionalisation are still in their infancy. Only a limited number of Phytophthora species have been successfully transformed and gene edited to elucidate the role of particular genes. There is a need to escalate our efforts to understand molecular processes, gene regulation and infection mechanisms of the pathogen to enable us to develop new disease management strategies. The primary obstacle hindering the advancement of transformation studies in Phytophthora is their challenging and unique nature, coupled with our limited comprehension of why they remain such an intractable system to work with. In this study, we have identified some of the key factors associated with the recalcitrant nature of P. cinnamomi. We have incorporated fluorescence microscopy and flow cytometry along with the organelle-specific dyes, fluorescein diacetate, Hoechst 33342 and MitoTracker™ Red CMXRos, to assess P. cinnamomi-derived protoplast populations. This approach has also provided valuable insights into the broader cell biology of Phytophthora. Furthermore, we have optimized the crucial steps that allow transformation of P. cinnamomi and have generated transformed isolates that express a cyan fluorescent protein, with a transformation efficiency of 19.5%. We therefore provide a platform for these methodologies to be applied for the transformation of other Phytophthora species and pave the way for future gene functionalisation studies.
疫霉是一种卵菌植物病原体,其宿主范围几乎涉及全球的 5000 种植物物种,因此对生物多样性构成严重威胁。组学技术为我们了解卵菌生物学提供了重大进展,然而,疫霉的基因功能化转化研究仍处于起步阶段。只有少数疫霉物种被成功转化和基因编辑,以阐明特定基因的作用。我们需要加大努力,了解病原体的分子过程、基因调控和感染机制,以便我们能够开发新的疾病管理策略。阻碍疫霉转化研究进展的主要障碍是其具有挑战性和独特性,再加上我们对为什么它们仍然是如此难以处理的系统的理解有限。在这项研究中,我们已经确定了与肉桂疫霉顽固性相关的一些关键因素。我们已经将荧光显微镜和流式细胞术与细胞器特异性染料荧光素二乙酸酯、Hoechst 33342 和 MitoTracker™ Red CMXRos 结合使用,以评估肉桂疫霉衍生原生质体群体。这种方法还为更广泛的疫霉细胞生物学提供了有价值的见解。此外,我们已经优化了允许肉桂疫霉转化的关键步骤,并生成了表达青色荧光蛋白的转化株,转化效率为 19.5%。因此,我们为这些方法应用于其他疫霉物种的转化提供了一个平台,并为未来的基因功能化研究铺平了道路。