文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

血浆外泌体通过 V-ATPase 亚基 V1G1 损害小胶质细胞对 α-突触核蛋白的降解。

Plasma exosomes impair microglial degradation of α-synuclein through V-ATPase subunit V1G1.

机构信息

Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

出版信息

CNS Neurosci Ther. 2024 May;30(5):e14738. doi: 10.1111/cns.14738.


DOI:10.1111/cns.14738
PMID:38702933
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11069054/
Abstract

INTRODUCTION: Microglia are the main phagocytes in the brain and can induce neuroinflammation. Moreover, they are critical to alpha-synuclein (α-syn) aggregation and propagation. Plasma exosomes derived from patients diagnosed with Parkinson's disease (PD-exo) reportedly evoked α-syn aggregation and inflammation in microglia. In turn, microglia internalized and released exosomal α-syn, enhancing α-syn propagation. However, the specific mechanism through which PD-exo influences α-syn degradation remains unknown. METHODS: Exosomes were extracted from the plasma of patients with PD by differential ultracentrifugation, analyzed using electron microscopy (EM) and nanoparticle flow cytometry, and stereotaxically injected into the unilateral striatum of the mice. Transmission EM was employed to visualize lysosomes and autophagosomes in BV2 cells, and lysosome pH was measured with LysoSensor Yellow/Blue DND-160. Cathepsin B and D, lysosomal-associated membrane protein 1 (LAMP1), ATP6V1G1, tumor susceptibility gene 101 protein, calnexin, α-syn, ionized calcium binding adaptor molecule 1, and NLR family pyrin domain containing 3 were evaluated using quantitative polymerase chain reaction or western blotting, and α-syn, LAMP1, and ATP6V1G1 were also observed by immunofluorescence. Small interfering ribonucleic acid against V1G1 was transfected into BV2 cells and primary microglia using Lipofectamine® 3000. A PD mouse model was established via injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into mice. A lentiviral-mediated strategy to overexpress ATP6V1G1 in the brain of MPTP-treated mice was employed. Motor coordination was assessed using rotarod and pole tests, and neurodegeneration in the mouse substantia nigra and striatum tissues was determined using immunofluorescence histochemical and western blotting of tyrosine hydroxylase. RESULTS: PD-exo decreased the expression of V1G1, responsible for the acidification of intra- and extracellular milieu. This impairment of lysosomal acidification resulted in the accumulation of abnormally swollen lysosomes and decreased lysosomal enzyme activities, impairing lysosomal protein degradation and causing α-syn accumulation. Additionally, V1G1 overexpression conferred the mice neuroprotection during MPTP exposure. CONCLUSION: Pathogenic protein accumulation is a key feature of PD, and compromised V-type ATPase dysfunction might participate in PD pathogenesis. Moreover, V1G1 overexpression protects against neuronal toxicity in an MPTP-based PD mouse model, which may provide opportunities to develop novel therapeutic interventions for PD treatment.

摘要

简介:小胶质细胞是大脑中的主要吞噬细胞,可引发神经炎症。此外,它们对α-突触核蛋白(α-syn)的聚集和传播至关重要。据报道,来自帕金森病(PD)患者的血浆外泌体(PD-exo)可诱发小胶质细胞中α-syn 的聚集和炎症。反过来,小胶质细胞内化并释放外泌体α-syn,从而增强α-syn 的传播。然而,PD-exo 影响 α-syn 降解的具体机制仍不清楚。 方法:通过差速超速离心从 PD 患者的血浆中提取外泌体,使用电子显微镜(EM)和纳米粒子流式细胞术进行分析,并立体定向注射到小鼠的单侧纹状体中。使用透射电子显微镜观察 BV2 细胞中的溶酶体和自噬体,并使用 LysoSensor Yellow/Blue DND-160 测量溶酶体 pH 值。使用定量聚合酶链反应或 Western blot 评估组织蛋白酶 B 和 D、溶酶体相关膜蛋白 1(LAMP1)、ATP6V1G1、肿瘤易感性基因 101 蛋白、钙连蛋白、α-syn、离子钙结合接头分子 1 和 NLR 家族含有吡喃结构域的 3 蛋白,并通过免疫荧光观察 α-syn、LAMP1 和 ATP6V1G1。使用 Lipofectamine®3000 将针对 V1G1 的小干扰核糖核酸转染到 BV2 细胞和原代小胶质细胞中。通过将 1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)注射到小鼠中建立 PD 小鼠模型。采用慢病毒介导的策略在 MPTP 处理的小鼠脑中过表达 ATP6V1G1。使用旋转棒和杆试验评估运动协调能力,并通过酪氨酸羟化酶的免疫荧光组织化学和 Western blot 测定小鼠黑质和纹状体组织中的神经退行性变。 结果:PD-exo 降低了负责细胞内外环境酸化的 V1G1 的表达。这种溶酶体酸化受损导致异常肿胀的溶酶体积累和溶酶体酶活性降低,从而损害溶酶体蛋白降解并导致 α-syn 积累。此外,V1G1 过表达可在 MPTP 暴露期间为小鼠提供神经保护。 结论:致病性蛋白积累是 PD 的一个关键特征,V 型 ATP 酶功能障碍可能参与 PD 的发病机制。此外,V1G1 过表达可防止 MPTP 诱导的 PD 小鼠模型中的神经元毒性,这可能为 PD 治疗提供新的治疗干预机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/0b0bf6c0d5ee/CNS-30-e14738-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/2094fb1afb16/CNS-30-e14738-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/ae63869945ec/CNS-30-e14738-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/bc786d7f8ed4/CNS-30-e14738-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/3101ec6391b8/CNS-30-e14738-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/117e767b5cf1/CNS-30-e14738-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/10154622da94/CNS-30-e14738-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/463e2bc80cda/CNS-30-e14738-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/4836aed95e35/CNS-30-e14738-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/0b0bf6c0d5ee/CNS-30-e14738-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/2094fb1afb16/CNS-30-e14738-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/ae63869945ec/CNS-30-e14738-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/bc786d7f8ed4/CNS-30-e14738-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/3101ec6391b8/CNS-30-e14738-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/117e767b5cf1/CNS-30-e14738-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/10154622da94/CNS-30-e14738-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/463e2bc80cda/CNS-30-e14738-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/4836aed95e35/CNS-30-e14738-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77a7/11069054/0b0bf6c0d5ee/CNS-30-e14738-g005.jpg

相似文献

[1]
Plasma exosomes impair microglial degradation of α-synuclein through V-ATPase subunit V1G1.

CNS Neurosci Ther. 2024-5

[2]
Microglia as modulators of exosomal alpha-synuclein transmission.

Cell Death Dis. 2019-2-20

[3]
Reactive microglia enhance the transmission of exosomal α-synuclein via toll-like receptor 2.

Brain. 2021-8-17

[4]
Metabotropic glutamate receptor 5 inhibits α-synuclein-induced microglia inflammation to protect from neurotoxicity in Parkinson's disease.

J Neuroinflammation. 2021-1-18

[5]
Microglial exosomes facilitate α-synuclein transmission in Parkinson's disease.

Brain. 2020-5-1

[6]
Dose-related biphasic effect of the Parkinson's disease neurotoxin MPTP, on the spread, accumulation, and toxicity of α-synuclein.

Neurotoxicology. 2021-5

[7]
Synergistic Effects of Milk-Derived Exosomes and Galactose on -Synuclein Pathology in Parkinson's Disease and Type 2 Diabetes Mellitus.

Int J Mol Sci. 2021-1-21

[8]
Microglia affect α-synuclein cell-to-cell transfer in a mouse model of Parkinson's disease.

Mol Neurodegener. 2019-8-16

[9]
TNFRSF10B is involved in motor dysfunction in Parkinson's disease by regulating exosomal α-synuclein secretion from microglia.

J Chem Neuroanat. 2023-4

[10]
Ciita Regulates Local and Systemic Immune Responses in a Combined rAAV-α-synuclein and Preformed Fibril-Induced Rat Model for Parkinson's Disease.

J Parkinsons Dis. 2024

引用本文的文献

[1]
Diffusion-tensor MRI study of the relationship between glymphatic system asymmetry and onset lateralization in Parkinson's disease.

NPJ Parkinsons Dis. 2025-7-24

[2]
[Recent advances on the role of exosomes in neurodegenerative diseases].

Se Pu. 2025-5

[3]
Emerging role of microglia in inter-cellular transmission of α-synuclein in Parkinson's disease.

Front Aging Neurosci. 2024-10-9

本文引用的文献

[1]
The Potential Roles of Extracellular Vesicles as Biomarkers for Parkinson's Disease: A Systematic Review.

Int J Mol Sci. 2022-9-29

[2]
Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes.

Cell. 2022-6-23

[3]
Preclinical and clinical evaluation of the LRRK2 inhibitor DNL201 for Parkinson's disease.

Sci Transl Med. 2022-6-8

[4]
Faulty autolysosome acidification in Alzheimer's disease mouse models induces autophagic build-up of Aβ in neurons, yielding senile plaques.

Nat Neurosci. 2022-6

[5]
Variants and Parkinson Disease: Mechanisms and Treatments.

Cells. 2022-4-8

[6]
Functions of the (pro)renin receptor (Atp6ap2) at molecular and system levels: pathological implications in hypertension, renal and brain development, inflammation, and fibrosis.

Pharmacol Res. 2021-11

[7]
Microglia jointly degrade fibrillar alpha-synuclein cargo by distribution through tunneling nanotubes.

Cell. 2021-9-30

[8]
NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification.

EMBO J. 2021-10-1

[9]
Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer disease.

Autophagy. 2022-3

[10]
Disturbed Mitochondria-Lysosome Crosstalk in GBA1-Associated Parkinson's Disease.

Mov Disord. 2021-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索