文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁性 SPIO-BMSCs 接种到双相支架中可促进肩袖修复后腱骨愈合。

Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair.

机构信息

Department of Orthopedic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Am J Sports Med. 2024 Jun;52(7):1707-1718. doi: 10.1177/03635465241247288. Epub 2024 May 4.


DOI:10.1177/03635465241247288
PMID:38702986
Abstract

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 μg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.

摘要

背景:肩袖肌腱骨界面(TBI)的自我愈合能力较差,这增加了肩袖修复(RCR)后再撕裂的风险。然而,促进 TBI 的再生仍然是一个巨大的临床挑战。在此,作者建立了一种基于磁播种的新策略,以增强 TBI 的再生。

假设:将超顺磁性氧化铁(SPIO)标记的骨髓间充质干细胞(BMSCs)播种到双相支架中,可以促进 RCR 后的肌腱骨愈合。

研究设计:对照实验室研究。

方法:BMSCs 用 SPIOs 标记。普鲁士蓝染色、CCK-8 试验、Western blot 和定量逆转录聚合酶链反应(PCR)用于确定 SPIOs 对细胞生物活性和能力的最佳作用浓度。然后,将 SPIO-BMSCs 在磁场下播种到双相支架中。通过扫描电子显微镜评估播种效果,并通过 Western blot 和 PCR 评估播种 SPIO-BMSCs 后在支架中向软骨分化的潜在机制。此外,使用大鼠模型检查 SPIO-BMSC/双相支架对 RCR 后肌腱骨愈合的影响,使用组织学分析、酶联免疫吸附测定和生物力学评估。

结果:100μg/mL SPIO 标记的 BMSCs 对细胞生物活性和软骨分化能力没有影响。SPIO-BMSCs 被磁播种到双相支架中,通过 CDR1as/miR-7/FGF2 通路提供了高的播种效率,从而增强了 SPIO-BMSCs 的软骨分化,形成了体外 TBI。此外,体内应用双相支架与磁播种 SPIO-BMSCs 显示出其再生潜力,表明它们可以在大鼠旋转袖撕裂模型中显著加速和促进 RCR 后的 TBI 愈合,并具有优异的生物力学性能。

结论:将 SPIO-BMSCs 磁播种到双相支架中提高了播种效率,促进了细胞的分布和凝聚。该构建物通过 CDR1as/miR-7/FGF2 通路增强了软骨形成过程,并进一步促进了大鼠旋转袖撕裂模型中 RCR 后的肌腱骨愈合。

临床相关性:这项研究为改善 RCR 后 TBI 愈合提供了一种替代策略。

相似文献

[1]
Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair.

Am J Sports Med. 2024-6

[2]
Regeneration of the rotator cuff tendon-to-bone interface using umbilical cord-derived mesenchymal stem cells and gradient extracellular matrix scaffolds from adipose tissue in a rat model.

Acta Biomater. 2020-9-15

[3]
Mesenchymal Stem Cell Secretome Improves Tendon Cell Viability In Vitro and Tendon-Bone Healing In Vivo When a Tissue Engineering Strategy Is Used in a Rat Model of Chronic Massive Rotator Cuff Tear.

Am J Sports Med. 2017-10-20

[4]
Rotator cuff repair augmentation in a rat model that combines a multilayer xenograft tendon scaffold with bone marrow stromal cells.

J Shoulder Elbow Surg. 2016-3

[5]
Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration.

J Orthop Translat. 2024-8-2

[6]
The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits.

Cell Transplant. 2020

[7]
The recombinant human fibroblast growth factor-18 (sprifermin) improves tendon-to-bone healing by promoting chondrogenesis in a rat rotator cuff repair model.

J Shoulder Elbow Surg. 2022-8

[8]
Engineered tendon-fibrocartilage-bone composite and bone marrow-derived mesenchymal stem cell sheet augmentation promotes rotator cuff healing in a non-weight-bearing canine model.

Biomaterials. 2018-10-29

[9]
Into-Tunnel Repair Versus Onto-Surface Repair for Rotator Cuff Tears in a Rabbit Model.

Am J Sports Med. 2018-4-5

[10]
Age-different BMSCs-derived exosomes accelerate tendon-bone interface healing in rotator cuff tears model.

Gene. 2024-2-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索