Suppr超能文献

基于静息态功能连接的口吃规划和运动亚型的证据。

Evidence for planning and motor subtypes of stuttering based on resting state functional connectivity.

机构信息

Boston University, Boston, MA, USA.

Boston University, Boston, MA, USA.

出版信息

Brain Lang. 2024 Jun;253:105417. doi: 10.1016/j.bandl.2024.105417. Epub 2024 May 3.

Abstract

We tested the hypothesis, generated from the Gradient Order Directions Into Velocities of Articulators (GODIVA) model, that adults who stutter (AWS) may comprise subtypes based on differing connectivity within the cortico-basal ganglia planning or motor loop. Resting state functional connectivity from 91 AWS and 79 controls was measured for all GODIVA model connections. Based on a principal components analysis, two connections accounted for most of the connectivity variability in AWS: left thalamus - left posterior inferior frontal sulcus (planning loop component) and left supplementary motor area - left ventral premotor cortex (motor loop component). A k-means clustering algorithm using the two connections revealed three clusters of AWS. Cluster 1 was significantly different from controls in both connections; Cluster 2 was significantly different in only the planning loop; and Cluster 3 was significantly different in only the motor loop. These findings suggest the presence of planning and motor subtypes of stuttering.

摘要

我们检验了一个假说,该假说源自构音器官速度的梯度序方向(GODIVA)模型,即口吃者(AWS)可能基于皮质-基底神经节规划或运动回路中不同的连通性而分为不同的亚型。我们测量了 91 名 AWS 和 79 名对照者的所有 GODIVA 模型连接的静息状态功能连通性。基于主成分分析,两个连接解释了 AWS 中大部分的连通性变异性:左丘脑 - 左后额下回(规划回路成分)和左辅助运动区 - 左腹侧前运动皮层(运动回路成分)。使用这两个连接的 k-均值聚类算法揭示了 AWS 的三个聚类。第 1 聚类在两个连接中与对照组均有显著差异;第 2 聚类仅在规划回路中存在显著差异;第 3 聚类仅在运动回路中存在显著差异。这些发现表明口吃存在规划和运动亚型。

相似文献

1
Evidence for planning and motor subtypes of stuttering based on resting state functional connectivity.
Brain Lang. 2024 Jun;253:105417. doi: 10.1016/j.bandl.2024.105417. Epub 2024 May 3.
2
Functional neural circuits that underlie developmental stuttering.
PLoS One. 2017 Jul 31;12(7):e0179255. doi: 10.1371/journal.pone.0179255. eCollection 2017.
3
Examining resting state functional connectivity and frequency power analysis in adults who stutter compared to adults who do not stutter.
Front Hum Neurosci. 2024 Feb 5;18:1338966. doi: 10.3389/fnhum.2024.1338966. eCollection 2024.
5
The role of anxiety in stuttering: Evidence from functional connectivity.
Neuroscience. 2017 Mar 27;346:216-225. doi: 10.1016/j.neuroscience.2016.11.033. Epub 2016 Dec 2.
6
Altered functional connectivity in persistent developmental stuttering.
Sci Rep. 2016 Jan 8;6:19128. doi: 10.1038/srep19128.
7
Structural and functional abnormalities of the motor system in developmental stuttering.
Brain. 2008 Jan;131(Pt 1):50-9. doi: 10.1093/brain/awm241. Epub 2007 Oct 10.
8
Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter.
Cereb Cortex. 2011 Nov;21(11):2507-18. doi: 10.1093/cercor/bhr028. Epub 2011 Apr 6.
9
Separation of trait and state in stuttering.
Hum Brain Mapp. 2018 Aug;39(8):3109-3126. doi: 10.1002/hbm.24063. Epub 2018 Apr 6.
10
Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers.
Cortex. 2010 Jan;46(1):49-67. doi: 10.1016/j.cortex.2009.02.017. Epub 2009 Mar 13.

引用本文的文献

本文引用的文献

1
Functional connectivity MRI quality control procedures in CONN.
Front Neurosci. 2023 Mar 23;17:1092125. doi: 10.3389/fnins.2023.1092125. eCollection 2023.
2
Brain developmental trajectories associated with childhood stuttering persistence and recovery.
Dev Cogn Neurosci. 2023 Apr;60:101224. doi: 10.1016/j.dcn.2023.101224. Epub 2023 Feb 26.
3
Auditory rhythm discrimination in adults who stutter: An fMRI study.
Brain Lang. 2023 Jan;236:105219. doi: 10.1016/j.bandl.2022.105219. Epub 2022 Dec 26.
5
rsfMRI based evidence for functional connectivity alterations in adults with developmental stuttering.
Heliyon. 2021 Aug 21;7(9):e07855. doi: 10.1016/j.heliyon.2021.e07855. eCollection 2021 Sep.
7
The Neural Circuitry Underlying the "Rhythm Effect" in Stuttering.
J Speech Lang Hear Res. 2021 Jun 18;64(6S):2325-2346. doi: 10.1044/2021_JSLHR-20-00328. Epub 2021 Apr 22.
8
Reliability of single-subject neural activation patterns in speech production tasks.
Brain Lang. 2021 Jan;212:104881. doi: 10.1016/j.bandl.2020.104881. Epub 2020 Dec 2.
9
Effects of Physiological Arousal on Speech Motor Control and Speech Motor Practice in Preschool-Age Children Who Do and Do Not Stutter.
J Speech Lang Hear Res. 2020 Oct 16;63(10):3364-3379. doi: 10.1044/2020_JSLHR-20-00092. Epub 2020 Sep 15.
10
Developmental stuttering and the role of the supplementary motor cortex.
J Fluency Disord. 2020 Jun;64:105763. doi: 10.1016/j.jfludis.2020.105763. Epub 2020 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验