Suppr超能文献

下肢深静脉血栓形成后血栓后综合征风险预测模型和预测工具的开发与验证。

Development and validation of a risk prediction model and prediction tools for post-thrombotic syndrome in patients with lower limb deep vein thrombosis.

机构信息

Nursing Department, the 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, 330000, China; School of Nursing, Jiangxi Medical College, Nanchang University, 330000, China.

School of the First Clinical Medical, Jiangxi Medical College, Nanchang University, 330000, China; Cardiovascular medicine department,the 1(st) affiliated hospital, Jiangxi Medical College, Nanchang University, 330000, China.

出版信息

Int J Med Inform. 2024 Jul;187:105468. doi: 10.1016/j.ijmedinf.2024.105468. Epub 2024 Apr 27.

Abstract

PURPOSE

Our research aims to compare the predictive performance of decision tree algorithms (DT) and logistic regression analysis (LR) in constructing models, and develop a Post-Thrombotic Syndrome (PTS) risk stratification tool.

METHODS

We retrospectively collected and analyzed relevant case information of 618 patients diagnosed with DVT from January 2012 to December 2021 in three different tertiary hospitals in Jiangxi Province as the modeling group. Additionally, we used the case information of 212 patients diagnosed with DVT from January 2022 to January 2023 in two tertiary hospitals in Hubei Province and Guangdong Province as the validation group. We extracted electronic medical record information including general patient data, medical history, laboratory test indicators, and treatment data for analysis. We established DT and LR models and compared their predictive performance using receiver operating characteristic (ROC) curves and confusion matrices. Internal and external validations were conducted. Additionally, we utilized LR to generate nomogram charts, calibration curves, and decision curves analysis (DCA) to assess its predictive accuracy.

RESULTS

Both DT and LR models indicate that Year, Residence, Cancer, Varicose Vein Operation History, DM, and Chronic VTE are risk factors for PTS occurrence. In internal validation, DT outperforms LR (0.962 vs 0.925, z = 3.379, P < 0.001). However, in external validation, there is no significant difference in the area under the ROC curve between the two models (0.963 vs 0.949, z = 0.412, P = 0.680). The validation results of calibration curves and DCA demonstrate that LR exhibits good predictive accuracy and clinical effectiveness. A web-based calculator software of nomogram (https://sunxiaoxuan.shinyapps.io/dynnomapp/) was utilized to visualize the logistic regression model.

CONCLUSIONS

The combination of decision tree and logistic regression models, along with the web-based calculator software of nomogram, can assist healthcare professionals in accurately assessing the risk of PTS occurrence in individual patients with lower limb DVT.

摘要

目的

本研究旨在比较决策树算法(DT)和逻辑回归分析(LR)在构建模型中的预测性能,并开发一种深静脉血栓后综合征(PTS)风险分层工具。

方法

我们回顾性收集并分析了 2012 年 1 月至 2021 年 12 月江西省三所三级医院诊断为 DVT 的 618 例患者的相关病例信息作为建模组。此外,我们还使用了 2022 年 1 月至 2023 年 1 月湖北省和广东省两所三级医院诊断为 DVT 的 212 例患者的病例信息作为验证组。我们提取电子病历信息,包括一般患者数据、病史、实验室检查指标和治疗数据进行分析。我们建立了 DT 和 LR 模型,并通过接收者操作特征(ROC)曲线和混淆矩阵比较它们的预测性能。进行了内部和外部验证。此外,我们还利用 LR 生成列线图、校准曲线和决策曲线分析(DCA)来评估其预测准确性。

结果

DT 和 LR 模型均表明,年份、居住地、癌症、静脉曲张手术史、糖尿病和慢性静脉血栓形成是 PTS 发生的危险因素。在内部验证中,DT 优于 LR(0.962 比 0.925,z=3.379,P<0.001)。然而,在外部验证中,两个模型的 ROC 曲线下面积没有显著差异(0.963 比 0.949,z=0.412,P=0.680)。校准曲线和 DCA 的验证结果表明,LR 具有良好的预测准确性和临床效果。我们还利用在线计算器软件可视化了逻辑回归模型(https://sunxiaoxuan.shinyapps.io/dynnomapp/)。

结论

决策树和逻辑回归模型的结合以及基于网络的列线图计算器软件可以帮助医疗保健专业人员准确评估下肢 DVT 患者 PTS 发生的风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验