Suppr超能文献

纳入新型炎症反应参数评分的深静脉血栓形成后血栓后综合征预测模型的构建

Construction of a Prediction Model for Post-thrombotic Syndrome after Deep Vein Thrombosis Incorporating Novel Inflammatory Response Parameter Scoring.

作者信息

Huo Jing, Xiao Yulin, Liu Siyang, Zhang Hong

机构信息

Department of General Medical, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China.

Department of Vascular Surgery, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Diseases, Chengde, Hebei, China.

出版信息

Ann Vasc Surg. 2024 Dec;109:466-484. doi: 10.1016/j.avsg.2024.06.005. Epub 2024 Jun 26.

Abstract

OBJECTIVE

To investigate the independent predictive factors for post-thrombotic syndrome (PTS) and to construct a risk prediction model for PTS by incorporating a novel inflammatory response parameter (NPM score) scoring.

METHODS

A retrospective study analyzed patients diagnosed with lower extremity deep vein thrombosis (LEDVTs at the Affiliated Hospital of Chengde Medical College from January 2018 to January 2022. The Villalta scale was used to assess the occurrence of PTS 6-24 months after discharge. Patients were randomly divided into a training set and a validation set at a ratio of 7:3. In the training set, univariate analysis was performed on meaningful continuous variables, and those with differences were converted into dichotomous variables based on optimal cutoff values. Variable selection was performed using Log Lambda and Least Absolute Shrinkage and Selection Operator 10-fold cross-validation, followed by multivariable logistic regression analysis on selected variables for model construction. The model underwent internal validation in the validation set and external validation in an independent external cohort, including discriminative analysis, calibration analysis, and clinical decision curve analysis (DCA), with the model's rationale being evaluated lastly.

RESULTS

A total of 356 patients with lower extremity DVT were included, with 249 in the training set for model construction and 107 in the validation set for internal validation, along with 37 external patients for external validation. A composite score of inflammatory response parameters, including the neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and monocyte to high-density lipoprotein cholesterol ratio (MHR) (NLR-PLR-MHR score, NPM score), was developed, showing a significantly higher NPM score in the PTS group compared to the non-PTS group (P < 0.05). Predictive factors related to the risk of PTS occurrence included staging (OR = 6.83, 95% CI: 2.74-18.04), varicose veins (OR = 7.30, 95% CI: 2.29-25.75), homocysteine (Hcy) (OR = 1.12, 95% CI: 1.04-1.22), NPM score (OR = 3.13, 95% CI: 1.94-5.36), standardized anticoagulant therapy (OR = 5.77, 95% CI: 1.25-27.62), and one-stop treatment (OR = 0.04, 95% CI: 0.00-0.35) were incorporated into the Nomogram model. The model showed good discrimination with a concordance index of 0.918 (95% CI: 0.876-0.959) for model construction, 0.843 (95% CI: 0.741-0.945) for internal validation, and 0.823 (95% CI: 0.667-0.903) for external validation. In the Nomogram model, internal and external validation calibration curves showed good agreement between observed and predicted values. DCA indicated that the Nomogram model predicted PTS risk probability thresholds ranging from 3% to 98% for model construction, 5%-97% for internal validation, and 10%-80% for external validation, demonstrating better net benefit for predicting PTS risk in the model, internal, and external validation. Rationality analysis showed the model and internal validation had higher discrimination and clinical net benefit than other clinical indices.

CONCLUSIONS

The NPM score combined with stage, varicose veins, Hcy, standardized anticoagulant therapy, and one-stop treatment in the Nomogram model provides a practical tool for health care professionals to assess the risk of PTS in DVT patients, enabling early identification of high-risk patients for effective PTS prevention.

摘要

目的

探讨血栓形成后综合征(PTS)的独立预测因素,并通过纳入一种新的炎症反应参数(NPM评分)构建PTS风险预测模型。

方法

一项回顾性研究分析了2018年1月至2022年1月在承德医学院附属医院被诊断为下肢深静脉血栓形成(LEDVT)的患者。采用Villalta量表评估出院后6 - 24个月PTS的发生情况。患者按7:3的比例随机分为训练集和验证集。在训练集中,对有意义的连续变量进行单因素分析,将有差异的变量根据最佳截断值转换为二分变量。使用Log Lambda和最小绝对收缩与选择算子10倍交叉验证进行变量选择,然后对选定变量进行多变量逻辑回归分析以构建模型。该模型在验证集中进行内部验证,并在独立的外部队列中进行外部验证,包括判别分析、校准分析和临床决策曲线分析(DCA),最后评估模型的合理性。

结果

共纳入356例下肢DVT患者,其中249例纳入训练集用于模型构建,107例纳入验证集用于内部验证,另有37例外部患者用于外部验证。开发了一种炎症反应参数综合评分,包括中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)和单核细胞与高密度脂蛋白胆固醇比值(MHR)(NLR - PLR - MHR评分,NPM评分),结果显示PTS组的NPM评分显著高于非PTS组(P < 0.05)。与PTS发生风险相关的预测因素包括分期(OR = 6.83,95%CI:2.74 - 18.04)、静脉曲张(OR = 7.30,95%CI:2.29 - 25.75)、同型半胱氨酸(Hcy)(OR = 1.12,95%CI:1.04 - 1.22)、NPM评分(OR = 3.13,95%CI:1.94 - 5.36)、标准化抗凝治疗(OR = 5.77,95%CI:1.25 - 27.62)和一站式治疗(OR = 0.04,95%CI:0.00 - 0.35),这些因素被纳入列线图模型。该模型显示出良好的判别能力,模型构建的一致性指数为0.918(95%CI:0.876 - 0.959),内部验证为0.843(95%CI:0.741 - 0.945),外部验证为0.823(95%CI:0.667 - 0.903)。在列线图模型中,内部和外部验证校准曲线显示观察值与预测值之间具有良好的一致性。DCA表明,列线图模型预测PTS风险概率阈值在模型构建中为3%至98%,内部验证为5% - 97%,外部验证为10% - 80%,表明该模型在模型构建、内部和外部验证中预测PTS风险具有更好的净效益。合理性分析表明,该模型和内部验证比其他临床指标具有更高的判别能力和临床净效益。

结论

列线图模型中的NPM评分结合分期、静脉曲张、Hcy、标准化抗凝治疗和一站式治疗,为医护人员评估DVT患者发生PTS的风险提供了一种实用工具,能够早期识别高危患者以有效预防PTS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验