Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece.
Laboratory of Physiology, University of Patras, Department of Medicine, Rion, Greece.
Mol Cell Neurosci. 2024 Jun;129:103935. doi: 10.1016/j.mcn.2024.103935. Epub 2024 May 3.
Muscarinic neurotransmission is fundamentally involved in supporting several brain functions by modulating flow of information in brain neural circuits including the hippocampus which displays a remarkable functional segregation along its longitudinal axis. However, how muscarinic neuromodulation contributes to the functional segregation along the hippocampus remains unclear. In this study we show that the nonselective muscarinic receptor agonist carbachol similarly suppresses basal synaptic transmission in the dorsal and ventral CA1 hippocampal field, in a concentration-depended manner. Furthermore, using a ten-pulse stimulation train of varying frequency we found that carbachol changes the frequency filtering properties more in ventral than dorsal hippocampus by facilitating synaptic inputs at a wide range of input frequencies in the ventral compared with dorsal hippocampus. Using the M2 receptor antagonist gallamine and the M4 receptor antagonist tropicamide, we found that M2 receptors are involved in controlling basal synaptic transmission and short-term synaptic plasticity (STSP) in the ventral but not the dorsal hippocampus, while M4 receptors participate in modulating basal synaptic transmission and STSP in both segments of the hippocampus. These results were corroborated by the higher protein expression levels of M2 receptors in the ventral compared with dorsal hippocampus. We conclude that muscarinic transmission modulates excitatory synaptic transmission and short-term synaptic plasticity along the entire rat hippocampus by acting through M4 receptors and recruiting M2 receptors only in the ventral hippocampus. Furthermore, M4 receptors appear to exert a permissive role on the actions of M2 receptors on STSP in the ventral hippocampus. This dorsoventral differentiation of muscarinic modulation is expected to have important implications in information processing along the endogenous hippocampal circuitry.
毒蕈碱型神经递质传递通过调节包括海马体在内的脑神经网络中信息流的流动,对支持多种脑功能起着根本作用,而海马体沿着其长轴显示出显著的功能分离。然而,毒蕈碱型神经调制如何促进海马体的功能分离尚不清楚。在这项研究中,我们发现非选择性毒蕈碱型受体激动剂卡巴胆碱以浓度依赖的方式相似地抑制背侧和腹侧 CA1 海马场的基础突触传递。此外,我们使用不同频率的十脉冲刺激串发现,与背侧海马体相比,卡巴胆碱通过在腹侧海马体中促进广泛输入频率的突触输入,更改变了腹侧而非背侧海马体的频率滤波特性。使用 M2 受体拮抗剂三甲铵和 M4 受体拮抗剂托吡卡胺,我们发现 M2 受体参与控制腹侧而非背侧海马体的基础突触传递和短期突触可塑性(STSP),而 M4 受体参与调节背侧和腹侧海马体的基础突触传递和 STSP。这些结果与 M2 受体在腹侧海马体中的蛋白表达水平高于背侧海马体的结果一致。我们得出结论,毒蕈碱型递质传递通过 M4 受体调节整个大鼠海马体的兴奋性突触传递和短期突触可塑性,并仅在腹侧海马体中通过募集 M2 受体来调节。此外,M4 受体似乎在腹侧海马体的 M2 受体对 STSP 的作用中发挥许可作用。这种背腹侧毒蕈碱调制的分化预计将对沿内源性海马体回路的信息处理具有重要意义。