Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 7: Affordable and Clean Energy, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria.
Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria.
Environ Res. 2024 Jul 1;252(Pt 3):119046. doi: 10.1016/j.envres.2024.119046. Epub 2024 May 3.
Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.
报告表明,孔雀石绿(MG)染料会导致各种激素紊乱和健康危害,因此,将其从水中去除已成为当务之急。在这项工作中,通过水热法开发了氧化锌修饰的芭蕉皮活性炭(ZnO@PPAC)。具有 205.2 m/g 比表面积、614.68 孔隙率和 Boehm 研究中主要酸性位的 ZnO@PPAC 纳米复合材料的物理化学特性确立了 ZnO@PPAC 的效力。ZnO@PPAC 的光谱特性与热重分析(TGA)、傅里叶变换红外光谱(FTIR)、粉末 X 射线衍射(PXRD)、扫描电子显微镜和高分辨率 - 透射电子显微镜(HR-TEM)相对照,分别通过相转变、官能团、结晶度与空间间隔、形态以及 ZnO@PPAC 异质结构的球形和纳米棒状形状和电子映射来描绘热稳定性。孔雀石绿染料在 ZnO@PPAC 纳米复合材料上的吸附受到不同操作参数的影响。三个温度(303、313 和 323 K)的平衡数据最符合 Freundlich 表示,表明 ZnO@PPAC 具有非均相性质。ZnO@PPAC 的单层容量为 77.517 mg/g,优于其他吸附剂。孔扩散在机制中占主导地位,动力学数据最符合伪二阶。热力学研究表明,螯合是可行的、吸热的和自发的。因此,ZnO@PPAC 被证明是一种可持续且高效的 MG 染料吸收材料,并被推荐用于处理工业废水。