Masood Saadia, Ibrar Bareera, Shabbir Javid, Shokri Ali, Movaheedi Zabihullah
Department of Statistics, PMAS-University of Arid Agriculture, Rawalpindi, Pakistan.
Department of Statistics, University of Wah, Wah, Pakistan.
Sci Rep. 2024 May 4;14(1):10255. doi: 10.1038/s41598-024-60714-2.
Our study explores neutrosophic statistics, an extension of classical and fuzzy statistics, to address the challenges of data uncertainty. By leveraging accurate measurements of an auxiliary variable, we can derive precise estimates for the unknown population median. The estimators introduced in this research are particularly useful for analysing unclear, vague data or within the neutrosophic realm. Unlike traditional methods that yield single-valued outcomes, our estimators produce ranges, suggesting where the population parameter is likely to be. We present the suggested generalised estimator's bias and mean square error within a first-order approximation framework. The practicality and efficiency of these proposed neutrosophic estimators are demonstrated through real-world data applications and the simulated data set.
我们的研究探索了中智统计,它是经典统计和模糊统计的扩展,以应对数据不确定性的挑战。通过利用辅助变量的精确测量,我们可以得出未知总体中位数的精确估计值。本研究中引入的估计量对于分析不清晰、模糊的数据或在中智领域内特别有用。与产生单值结果的传统方法不同,我们的估计量产生范围,表明总体参数可能所在的位置。我们在一阶近似框架内给出了建议的广义估计量的偏差和均方误差。通过实际数据应用和模拟数据集证明了这些提出的中智估计量的实用性和效率。