Anwar Muhammad Bilal, Hanif Muhammad, Shahzad Usman, Emam Walid, Anas Malik Muhammad, Ali Nasir, Shahzadi Shabnam
Department of Mathematics and Statistics - PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan.
Department of Statistics and Operations Research, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
Heliyon. 2024 Jan 29;10(3):e25471. doi: 10.1016/j.heliyon.2024.e25471. eCollection 2024 Feb 15.
In traditional statistics, all research endeavors revolve around utilizing precise, crisp data for the predictive estimation of population mean in survey sampling, when the supplementary information is accessible. However, these types of estimates often suffer from bias. The major aim is to uncover the most accurate estimates for the unknown value of the population mean while minimizing the mean square error (MSE). We have employed the neutrosophic approach, which is the extension of classical statistics that deals with the uncertain, vague, and indeterminate information, and proposed a neutrosophic predictive estimator of finite population mean using the kernel regression. The proposed estimator does not yield a single numerical value but instead provides an interval range within which the population parameter is likely to exist. This approach enhances the efficiency of the estimators by offering an estimated interval that encompasses the unknown value of the population mean with the least possible mean squared error (MSE). The simulation-based efficiency of the proposed estimator is discussed using the Sine, Bump and real-time temperature data set of Islamabad by using symmetric (Gaussian) kernel. The proposed non-parametric neutrosophic estimator has shown more effective results under the various bandwidth selectors than the adapted neutrosophic estimators.
在传统统计学中,当可获取补充信息时,所有研究工作都围绕利用精确、清晰的数据对调查抽样中的总体均值进行预测估计展开。然而,这类估计往往存在偏差。主要目标是在最小化均方误差(MSE)的同时,找到总体均值未知值的最准确估计。我们采用了中智方法,它是经典统计学的扩展,用于处理不确定、模糊和不确定的信息,并提出了一种使用核回归的有限总体均值的中智预测估计器。所提出的估计器不会产生单个数值,而是提供一个总体参数可能存在的区间范围。这种方法通过提供一个以尽可能小的均方误差(MSE)包含总体均值未知值的估计区间,提高了估计器的效率。通过使用对称(高斯)核,利用伊斯兰堡的正弦、脉冲和实时温度数据集讨论了所提出估计器基于模拟的效率。所提出的非参数中智估计器在各种带宽选择器下比适应性中智估计器显示出更有效的结果。