Wang Xinqiang, Zhou Jinhao, Cui Wengang, Gao Fan, Gao Yong, Qi Fulai, Liu Yanxia, Yang Xiaoying, Wang Ke, Li Zhenglong, Yang Yaxiong, Chen Jian, Sun Wenping, Sun Lixian, Pan Hongge
Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, 710021, P. R. China.
Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528225, P. R. China.
Adv Sci (Weinh). 2024 Jul;11(26):e2401207. doi: 10.1002/advs.202401207. Epub 2024 May 5.
Developing high-efficiency and stable bifunctional electrocatalysts for water splitting remains a great challenge. Herein, NiMoO nanowires as sacrificial templates to synthesize Mo-doped NiFe Prussian blue analogs are employed, which can be easily phosphorized to Mo-doped FeNiP nanotubes (Mo-FeNiP NTs). This synthesis method enables the controlled etching of NiMoO nanowires that results in a unique hollow nanotube architecture. As a bifunctional catalyst, the Mo-FeNiP NTs present lower overpotential and Tafel slope of 151.3 (232.6) mV at 100 mA cm and 76.2 (64.7) mV dec for HER (OER), respectively. Additionally, it only requires an ultralow cell voltage of 1.47 V to achieve 10 mA cm for overall water splitting and can steadily operate for 200 h at 100 mA cm. First-principles calculations demonstrate that Mo doping can effectively adjust the electron redistribution of the Ni hollow sites to optimize the hydrogen adsorption-free energy for HER. Besides, in situ Raman characterization reveals the dissolving of doped Mo can promote a rapid surface reconstruction on Mo-FeNiP NTs to dynamically stable (Fe)Ni-oxyhydroxide layers, serving as the actual active species for OER. The work proposes a rational approach addressed by electron manipulation and surface reconstruction of bimetallic phosphides to regulate both the HER and OER activity.
开发用于水分解的高效稳定双功能电催化剂仍然是一项巨大挑战。在此,采用NiMoO纳米线作为牺牲模板来合成Mo掺杂的NiFe普鲁士蓝类似物,其可轻松磷化为Mo掺杂的FeNiP纳米管(Mo-FeNiP NTs)。这种合成方法能够对NiMoO纳米线进行可控蚀刻,从而形成独特的中空纳米管结构。作为双功能催化剂,Mo-FeNiP NTs在100 mA cm下HER(OER)的过电位和塔菲尔斜率分别为151.3(232.6)mV和76.2(64.7)mV dec。此外,对于全水分解,仅需1.47 V的超低电池电压即可实现10 mA cm,并且在100 mA cm下可稳定运行200 h。第一性原理计算表明,Mo掺杂可有效调节Ni中空位点的电子再分布,以优化HER的氢吸附自由能。此外,原位拉曼表征揭示了掺杂Mo的溶解可促进Mo-FeNiP NTs表面快速重构为动态稳定的(Fe)Ni-羟基氧化物层,作为OER的实际活性物种。这项工作提出了一种通过双金属磷化物的电子操纵和表面重构来调节HER和OER活性的合理方法。