Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
J Colloid Interface Sci. 2024 Sep;669:64-74. doi: 10.1016/j.jcis.2024.04.218. Epub 2024 Apr 30.
The intricate organization of goethite nanorods within a silica-rich matrix makes limpet teeth the strongest known natural material. However, the mineralization pathway of goethite in organisms under ambient conditions remains elusive. Here, by investigating the multi-level structure of limpet teeth at different growth stages, it is revealed that the growth of goethite crystals proceeds by the attachment of amorphous nanoparticles, a nonclassical crystallization pathway widely observed during the formation of calcium-based biominerals. Importantly, these nanoparticles contain a high amount of silica, which is gradually expelled during the growth of goethite. Moreover, in mature teeth of limpet, the content of silica correlates with the size of goethite crystals, where smaller goethite crystals are densely packed in the leading part with higher content of silica. Correspondingly, the leading part exhibits higher hardness and elastic modulus. Thus, this study not only reveals the nonclassical crystallization pathway of goethite nanorods in limpet teeth, but also highlights the critical roles of silica in controlling the hierarchical structure and the mechanical properties of limpet teeth, thus providing inspirations for fabricating biomimetic materials with excellent properties.
在富含二氧化硅的基质中,针铁矿纳米棒的复杂组织使帽贝牙齿成为已知的最强的天然材料。然而,在环境条件下生物体中针铁矿的矿化途径仍然难以捉摸。在这里,通过研究不同生长阶段帽贝牙齿的多层次结构,揭示了针铁矿晶体的生长是通过无定形纳米颗粒的附着进行的,这是一种在钙基生物矿化过程中广泛观察到的非经典结晶途径。重要的是,这些纳米颗粒含有大量的二氧化硅,在针铁矿生长过程中逐渐被排出。此外,在帽贝成熟的牙齿中,二氧化硅的含量与针铁矿晶体的大小相关,较小的针铁矿晶体在富含二氧化硅的前缘部分紧密堆积。相应地,前缘部分表现出更高的硬度和弹性模量。因此,这项研究不仅揭示了帽贝牙齿中针铁矿纳米棒的非经典结晶途径,还强调了二氧化硅在控制帽贝牙齿的分级结构和机械性能方面的关键作用,为制备具有优异性能的仿生材料提供了启示。