Rodríguez-Navarro Carlos, Ruiz-Agudo Encarnación, Harris Joe, Wolf Stephan E
Dpto. Mineralogía y Petrología, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain.
Dpto. Mineralogía y Petrología, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain.
J Struct Biol. 2016 Nov;196(2):260-287. doi: 10.1016/j.jsb.2016.09.005. Epub 2016 Sep 9.
Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined.
近期研究表明,生物矿物及其仿生材料:(i)通常通过无定形前驱体相形成,且(ii)普遍呈现纳米颗粒纹理。显然,这两个关键特征密切相关,突显了生物矿物及其仿生材料的形成不一定遵循经典结晶途径这一事实,并留下了独特的纳米纹理印记,这可能有助于揭示它们的起源和形成机制。在此,我们概述当前非经典结晶的理论和模型及其在推进我们对生物矿化和仿生矿化当前理解方面的适用性。我们特别关注非经典结晶途径与仿生碳酸钙矿物结构所产生的纳米颗粒纹理之间的联系。在一个一般性的引言部分之后,我们概述经典成核和晶体生长理论及其局限性。然后,我们引入奥斯特瓦尔德步骤规则作为解释非经典结晶的一般框架。随后,我们描述涉及稳定的预成核簇、致密液体和固体无定形前驱体相的非经典结晶途径,以及当前的非经典晶体生长模型。后者包括取向附生、介晶化以及基于通过无定形纳米颗粒附着实现晶体胶体生长的新模型。展示了通过这些非经典途径形成的纳米结构碳酸钙矿物的仿生实例,这有助于我们表明胶体介导的晶体生长可被视为一种广泛存在的生长机制。最后概述了这些观察结果对当前在仿生材料和生物矿物形成理解方面进展的影响。