Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
Arch Biochem Biophys. 2024 Jun;756:110023. doi: 10.1016/j.abb.2024.110023. Epub 2024 May 3.
Myeloperoxidase is a critical component of the antibacterial arsenal of neutrophils, whereby it consumes HO as an oxidant to convert halogen and pseudohalogen anions into cytotoxic hypohalous acids. Following phagocytosis by neutrophils, the human pathogen Staphylococcus aureus secretes a potent myeloperoxidase inhibitory protein, called SPIN, as part of its immune evasion repertoire. The matured S. aureus SPIN polypeptide consists of only 73 residues yet contains two functional domains: whereas the 60 residue C-terminal helical bundle domain is responsible for MPO binding, the 13 residue N-terminal domain is required to inhibit MPO. Previous studies have informed understanding of the SPIN N-terminal domain, but comparatively little is known about the helical domain insofar as the contribution of individual residues is concerned. To address this limitation, we carried out a residue-level structure/function investigation on the helical bundle domain of S. aureus SPIN. Using sequence conservation and existing structures of SPIN bound to human MPO as a guide, we selected residues L49, E50, H51, E52, Y55, and Y75 for interrogation by site-directed mutagenesis. We found that loss of L49 or E52 reduced SPIN activity by roughly an order of magnitude, but that loss of Y55 or H51 caused progressively greater loss of inhibitory potency. Direct binding studies by SPR showed that loss of inhibitory potency in these SPIN mutants resulted from a diminished initial interaction between the inhibitor and MPO. Together, our studies provide new insights into the structure/function relationships of SPIN and identify positions Y55 and H51 as critical determinants of SPIN function.
髓过氧化物酶是中性粒细胞抗菌武器库中的关键组成部分,它消耗 HO 作为氧化剂,将卤素和拟卤素阴离子转化为细胞毒性次卤酸。中性粒细胞吞噬后,人类病原体金黄色葡萄球菌会分泌一种强效的髓过氧化物酶抑制蛋白,称为 SPIN,作为其免疫逃避机制的一部分。成熟的金黄色葡萄球菌 SPIN 多肽仅由 73 个残基组成,但包含两个功能域:60 个残基的 C 端螺旋束结构域负责与 MPO 结合,而 13 个残基的 N 端结构域则负责抑制 MPO。先前的研究已经深入了解了 SPIN 的 N 端结构域,但就单个残基的贡献而言,对螺旋结构域的了解相对较少。为了解决这一局限性,我们对金黄色葡萄球菌 SPIN 的螺旋结构域进行了残基水平的结构/功能研究。我们利用序列保守性和现有的 SPIN 与人 MPO 结合的结构作为指导,选择了 L49、E50、H51、E52、Y55 和 Y75 残基进行定点突变。研究发现,L49 或 E52 的缺失会使 SPIN 的活性降低约一个数量级,但 Y55 或 H51 的缺失会导致抑制效力逐渐降低。SPR 直接结合研究表明,这些 SPIN 突变体中抑制效力的丧失是由于抑制剂与 MPO 之间初始相互作用减弱所致。总之,我们的研究为 SPIN 的结构/功能关系提供了新的见解,并确定 Y55 和 H51 是 SPIN 功能的关键决定因素。