Suppr超能文献

利用动态时空图池网络识别自发功能红外光谱序列信号中的自闭症谱系障碍。

Using dynamic spatio-temporal graph pooling network for identifying autism spectrum disorders in spontaneous functional infrared spectral sequence signals.

机构信息

School of Computer Engineering and Science, Shanghai University, Shanghai, China.

School of Computer Engineering and Science, Shanghai University, Shanghai, China; Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, China.

出版信息

J Neurosci Methods. 2024 Sep;409:110157. doi: 10.1016/j.jneumeth.2024.110157. Epub 2024 May 3.

Abstract

BACKGROUND

Autism classification work on fNIRS data using dynamic graph networks. Explore the impact of the dynamic connection relationship between brain channels on ASD, and compare the brain channel connection diagrams of ASD and TD to explore potential factors that influence the development of autism.

METHOD

Using dynamic graph construction to mine the dynamic relationships of fNIRS data, obtain spatio-temporal correlations through dynamic feature extraction, and improve the information extraction capabilities of the network through spatio-temporal graph pooling to achieve classification of ASD.

RESULT

A classification effect with an accuracy of 97.2% was achieved using a short sequence of 1.75s. The results showed that the dynamic connections of channel 5 and 19, channel 12 and 25, and channel 7 and 34 have a greater impact on the classification of autism. Comparison with previously used method(s): Compared with previous deep learning models, our model achieves efficient classification using short-term fNIRS data of 1.75s, and analyzes the impact of dynamic connections on classification through dynamic graphs.

CONCLUSION

Using Dynamic Spatio-Temporal Graph Pooled Neural Networks (DSTGPN), dynamic connectivity between brain channels was found to have an impact on the classification of autism. By modeling the brain channel relationship maps of ASD and TD, hyperlink clusters were found to exist on the brain channel connections of ASD.

摘要

背景

使用动态图网络对 fNIRS 数据进行自闭症分类工作。探索脑通道之间动态连接关系对 ASD 的影响,并比较 ASD 和 TD 的脑通道连接图,探索影响自闭症发展的潜在因素。

方法

使用动态图构建来挖掘 fNIRS 数据的动态关系,通过动态特征提取获得时空相关性,并通过时空图池化来提高网络的信息提取能力,从而实现 ASD 的分类。

结果

使用 1.75s 的短序列实现了 97.2%的分类效果。结果表明,通道 5 和 19、通道 12 和 25、通道 7 和 34 的动态连接对自闭症的分类有较大影响。与之前使用的方法比较:与之前的深度学习模型相比,我们的模型使用 1.75s 的短期 fNIRS 数据实现了高效分类,并通过动态图分析了动态连接对分类的影响。

结论

使用动态时空图池化神经网络(DSTGPN),发现脑通道之间的动态连接对自闭症的分类有影响。通过对 ASD 和 TD 的脑通道关系图进行建模,发现 ASD 的脑通道连接存在超链接簇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验