Computer Science and Engineering, Northeastern University, Shenyang, China.
Alibaba A.I. Labs., Hangzhou, China.
Med Biol Eng Comput. 2022 Jul;60(7):1897-1913. doi: 10.1007/s11517-022-02558-4. Epub 2022 May 6.
The dynamic functional connectivity analysis provides valuable information for understanding functional brain activity underlying different cognitive processes. Modeling spatio-temporal dynamics in functional brain networks is critical for underlying the functional mechanism of autism spectrum disorder (ASD). In our study, we propose a machine learning approach for the classification of neurological disorders while providing an interpretable framework, which thoroughly captures spatio-temporal features in resting-state functional magnetic resonance imaging (rs-fMRI) data. Specifically, we first transform rs-fMRI time-series into temporal multi-graph using the sliding window technique. A temporal multi-graph clustering is then designed to eliminate the inconsistency of the temporal multi-graph series. Then, a graph structure-aware LSTM (GSA-LSTM) is further proposed to capture the spatio-temporal embedding for temporal graphs. Furthermore, The proposed GSA-LSTM can not only capture discriminative features for prediction but also impute the incomplete graphs for the temporal multi-graph series. Extensive experiments on the autism brain imaging data exchange (ABIDE) dataset demonstrate that the proposed dynamic brain network embedding learning outperforms the state-of-the-art brain network classification models. Furthermore, the obtained clustering results are consistent with the previous neuroimaging-derived evidence of biomarkers for autism spectrum disorder (ASD).
动态功能连接分析为理解不同认知过程的基础功能脑活动提供了有价值的信息。对功能脑网络中的时空动态进行建模对于揭示自闭症谱系障碍(ASD)的功能机制至关重要。在我们的研究中,我们提出了一种用于神经疾病分类的机器学习方法,同时提供了一个可解释的框架,该框架可以彻底捕获静息态功能磁共振成像(rs-fMRI)数据中的时空特征。具体来说,我们首先使用滑动窗口技术将 rs-fMRI 时间序列转换为时间多图。然后设计了一个时间多图聚类来消除时间多图序列的不一致性。然后,进一步提出了一种图结构感知 LSTM(GSA-LSTM)来捕获时间图的时空嵌入。此外,所提出的 GSA-LSTM 不仅可以捕获用于预测的有鉴别力的特征,还可以对时间多图序列中的不完全图进行插补。在自闭症脑成像数据交换(ABIDE)数据集上的广泛实验表明,所提出的动态脑网络嵌入学习优于最先进的脑网络分类模型。此外,获得的聚类结果与先前神经影像学衍生的自闭症谱系障碍(ASD)生物标志物的证据一致。