Suppr超能文献

纳米污染物(nZnO)暴露会增强缺氧的负面影响,并延迟贻贝免疫系统的恢复。

Exposure to nanopollutants (nZnO) enhances the negative effects of hypoxia and delays recovery of the mussels' immune system.

机构信息

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.

Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany.

出版信息

Environ Pollut. 2024 Jun 15;351:124112. doi: 10.1016/j.envpol.2024.124112. Epub 2024 May 3.

Abstract

Aquatic environments face escalating challenges from multiple stressors like hypoxia and nanoparticle exposure, with impact of these combined stressors on mussel immunity being poorly understood. We investigated the individual and combined effects of short-term and long-term hypoxia and exposure to zinc oxide nanoparticles (nZnO) on immune system of the mussels (Mytilus edulis). Hemocyte functional traits (mortality, adhesion capacity, phagocytosis, lysosomal abundance, and oxidative burst), and transcript levels of immune-related genes involved in pathogen recognition (the Toll-like receptors, the complement system components, and the adaptor proteins MyD88) were assessed. Short-term hypoxia minimally affected hemocyte parameters, while prolonged exposure led to immunosuppression, impacting hemocyte abundance, viability, phagocytosis, and defensin gene expression. Under normoxia, nZnO stimulated immune responses of mussel hemocytes. However, combined nZnO and hypoxia induced more pronounced and rapid immunosuppression than hypoxia alone, indicating a synergistic interaction. nZnO exposure hindered immune parameter recovery during post-hypoxic reoxygenation, suggesting persistent impact. Opposing trends were observed in pathogen-sensing and pathogen-elimination mechanisms, with a positive correlation between pathogen-recognition system activation and hemocyte mortality. These findings underscore a complex relationship and potential conflict between pathogen-recognition ability, immune function, and cell survival in mussel hemocytes under hypoxia and nanopollutant stress, and emphasize the importance of considering multiple stressors in assessing the vulnerability and adaptability of mussel immune system under complex environmental conditions of anthropogenically modified coastal ecosystems.

摘要

水生环境面临着多种胁迫因素(如缺氧和纳米颗粒暴露)的日益严峻的挑战,而这些复合胁迫因素对贻贝免疫的影响还知之甚少。我们研究了短期和长期缺氧以及暴露于氧化锌纳米颗粒(nZnO)对贻贝(Mytilus edulis)免疫系统的单独和联合影响。评估了血细胞功能特征(死亡率、黏附能力、吞噬作用、溶酶体丰度和氧化爆发)以及参与病原体识别的免疫相关基因的转录水平(Toll 样受体、补体系统成分和衔接蛋白 MyD88)。短期缺氧对血细胞参数的影响最小,而长期暴露则导致免疫抑制,影响血细胞丰度、活力、吞噬作用和防御素基因表达。在正常氧条件下,nZnO 刺激贻贝血细胞的免疫反应。然而,与单独缺氧相比,nZnO 和缺氧的联合作用诱导了更明显和更快的免疫抑制,表明存在协同相互作用。nZnO 暴露阻碍了缺氧后再复氧过程中免疫参数的恢复,表明存在持续影响。在病原体感知和消除机制中观察到相反的趋势,病原体识别系统的激活与血细胞死亡率之间呈正相关。这些发现强调了在缺氧和纳米污染物胁迫下贻贝血细胞中病原体识别能力、免疫功能和细胞存活之间的复杂关系和潜在冲突,并强调了在评估人为改变的沿海生态系统复杂环境条件下贻贝免疫系统的脆弱性和适应性时,考虑多种胁迫因素的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验