Manzoor Sumaira, Ali Shahid, Mansha Muhammad, Sadaqat Maira, Ashiq Muhammad Naeem, Tahir Muhammad Nawaz, Khan Safyan Akram
Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Chem Asian J. 2024 Aug 19;19(16):e202400365. doi: 10.1002/asia.202400365. Epub 2024 Jun 4.
Hydrogen energy heralded for its environmentally friendly, renewable, efficient, and cost-effective attributes, stands poised as the primary alternative to fossil fuels in the future. Despite its great potential, the low volumetric density presents a formidable challenge in hydrogen storage. Addressing this challenge necessitates exploring effective storage techniques for a sustainable hydrogen economy. Solid-state hydrogen storage in nanomaterials (physically or chemically) holds promise for achieving large-scale hydrogen storage applications. Such approaches offer benefits, including safety, compactness, lightness, reversibility, and efficient generation of pure hydrogen fuel under mild conditions. This article presents solid-state nanomaterials, specifically nanoporous carbons (activated carbon, carbon fibers), metal-organic frameworks, covalently connected frameworks, nanoporous organic polymers, and nanoscale metal hydrides. Furthermore, new developments in hydrogen fuel cell technology for stationary and mobile applications have been demonstrated. The review outlines significant advancements thus far, identifies key barriers to practical implementation, and presents a perspective for future sustainable energy research. It concludes with recommendations to enhance hydrogen storage performance for cost-effective and long-lasting utilization.
氢能因其环保、可再生、高效和具有成本效益的特性而备受瞩目,有望在未来成为化石燃料的主要替代品。尽管氢能潜力巨大,但低体积密度在储氢方面构成了严峻挑战。应对这一挑战需要探索有效的储存技术,以实现可持续的氢能经济。纳米材料中的固态储氢(物理或化学方式)有望实现大规模储氢应用。这些方法具有诸多优点,包括安全性、紧凑性、轻便性、可逆性以及在温和条件下高效生成纯氢燃料。本文介绍了固态纳米材料,特别是纳米多孔碳(活性炭、碳纤维)、金属有机框架、共价连接框架、纳米多孔有机聚合物和纳米级金属氢化物。此外,还展示了用于固定式和移动式应用的氢燃料电池技术的新进展。该综述概述了迄今为止的重大进展,确定了实际应用中的关键障碍,并提出了未来可持续能源研究的展望。最后给出了提高储氢性能以实现经济高效和长期利用的建议。