Suppr超能文献

氢气生产、储存与运输:最新进展

Hydrogen production, storage, and transportation: recent advances.

作者信息

Rampai M M, Mtshali C B, Seroka N S, Khotseng L

机构信息

Tandetron Laboratory, iThemba LABS, National Research Foundation P.O. Box 722 Somerset West 7129 South Africa

Department of Chemistry, University of the Western Cape Private Bag X17 Bellville 7535 South Africa.

出版信息

RSC Adv. 2024 Feb 23;14(10):6699-6718. doi: 10.1039/d3ra08305e. eCollection 2024 Feb 21.

Abstract

One such technology is hydrogen-based which utilizes hydrogen to generate energy without emission of greenhouse gases. The advantage of such technology is the fact that the only by-product is water. Efficient storage is crucial for the practical application of hydrogen. There are several techniques to store hydrogen, each with certain advantages and disadvantages. In gaseous hydrogen storage, hydrogen gas is compressed and stored at high pressures, requiring robust and expensive pressure vessels. In liquid hydrogen storage, hydrogen is cooled to extremely low temperatures and stored as a liquid, which is energy-intensive. Researchers are exploring advanced materials for hydrogen storage, including metal hydrides, carbon-based materials, metal-organic frameworks (MOFs), and nanomaterials. These materials aim to enhance storage capacity, kinetics, and safety. The hydrogen economy envisions hydrogen as a clean energy carrier, utilized in various sectors like transportation, industry, and power generation. It can contribute to decarbonizing sectors that are challenging to electrify directly. Hydrogen can play a role in a circular economy by facilitating energy storage, supporting intermittent renewable sources, and enabling the production of synthetic fuels and chemicals. The circular economy concept promotes the recycling and reuse of materials, aligning with sustainable development goals. Hydrogen availability depends on the method of production. While it is abundant in nature, obtaining it in a clean and sustainable manner is crucial. The efficiency of hydrogen production and utilization varies among methods, with electrolysis being a cleaner but less efficient process compared to other conventional methods. Chemisorption and physisorption methods aim to enhance storage capacity and control the release of hydrogen. There are various viable options that are being explored to solve these challenges, with one option being the use of a multilayer film of advanced metals. This work provides an overview of hydrogen economy as a green and sustainable energy system for the foreseeable future, hydrogen production methods, hydrogen storage systems and mechanisms including their advantages and disadvantages, and the promising storage system for the future. In summary, hydrogen holds great promise as a clean energy carrier, and ongoing research and technological advancements are addressing challenges related to production, storage, and utilization, bringing us closer to a sustainable hydrogen economy.

摘要

一种这样的技术是以氢为基础的,它利用氢气来产生能量而不排放温室气体。这种技术的优点是其唯一的副产品是水。高效存储对于氢气的实际应用至关重要。有几种存储氢气的技术,每种技术都有一定的优缺点。在气态储氢中,氢气被压缩并在高压下储存,这需要坚固且昂贵的压力容器。在液态储氢中,氢气被冷却到极低温度并作为液体储存,这是能源密集型的。研究人员正在探索用于储氢的先进材料,包括金属氢化物、碳基材料、金属有机框架(MOFs)和纳米材料。这些材料旨在提高存储容量、动力学性能和安全性。氢能经济设想将氢气作为一种清洁能源载体,应用于交通、工业和发电等各个领域。它可以为直接电气化具有挑战性的部门脱碳做出贡献。氢气可以通过促进能量存储、支持间歇性可再生能源以及实现合成燃料和化学品的生产,在循环经济中发挥作用。循环经济概念促进材料的回收和再利用,与可持续发展目标相一致。氢气的可得性取决于生产方法。虽然它在自然界中很丰富,但以清洁和可持续的方式获取它至关重要。氢气生产和利用的效率在不同方法之间有所不同,与其他传统方法相比,电解是一种更清洁但效率较低的过程。化学吸附和物理吸附方法旨在提高存储容量并控制氢气的释放。正在探索各种可行的选项来解决这些挑战,其中一个选项是使用先进金属的多层膜。这项工作概述了在可预见的未来作为绿色和可持续能源系统的氢能经济、制氢方法、储氢系统及其机制(包括它们的优缺点)以及未来有前景的存储系统。总之,氢气作为一种清洁能源载体具有巨大潜力,正在进行的研究和技术进步正在应对与生产、存储和利用相关的挑战,使我们更接近可持续的氢能经济。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff24/10884891/a261bb6780bb/d3ra08305e-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验