Suppr超能文献

具有自适应突触时滞的尖峰神经网络系统。

Spiking Neural Membrane Systems with Adaptive Synaptic Time Delay.

机构信息

College of Business, Shandong Normal University, Jinan 250014, P. R. China.

出版信息

Int J Neural Syst. 2024 Jun;34(6):2450028. doi: 10.1142/S012906572450028X.

Abstract

Spiking neural membrane systems (or spiking neural P systems, SNP systems) are a new type of computation model which have attracted the attention of plentiful scholars for parallelism, time encoding, interpretability and extensibility. The original SNP systems only consider the time delay caused by the execution of rules within neurons, but not caused by the transmission of spikes via synapses between neurons and its adaptive adjustment. In view of the importance of time delay for SNP systems, which are a time encoding computation model, this study proposes SNP systems with adaptive synaptic time delay (ADSNP systems) based on the dynamic regulation mechanism of synaptic transmission delay in neural systems. In ADSNP systems, besides neurons, astrocytes that can generate adenosine triphosphate (ATP) are introduced. After receiving spikes, astrocytes convert spikes into ATP and send ATP to the synapses controlled by them to change the synaptic time delays. The Turing universality of ADSNP systems in number generating and accepting modes is proved. In addition, a small universal ADSNP system using 93 neurons and astrocytes is given. The superiority of the ADSNP system is demonstrated by comparison with the six variants. Finally, an ADSNP system is constructed for credit card fraud detection, which verifies the feasibility of the ADSNP system for solving real-world problems. By considering the adaptive synaptic delay, ADSNP systems better restore the process of information transmission in biological neural networks, and enhance the adaptability of SNP systems, making the control of time more accurate.

摘要

尖峰神经网络系统(或尖峰神经网络 P 系统,SNP 系统)是一种新型的计算模型,因其并行性、时间编码、可解释性和可扩展性而引起了众多学者的关注。原始的 SNP 系统仅考虑了规则在神经元内执行引起的时间延迟,而没有考虑到神经元之间突触传递引起的时间延迟及其自适应调整。鉴于 SNP 系统作为一种时间编码计算模型的时间延迟的重要性,本研究基于神经系统中突触传递延迟的动态调节机制,提出了具有自适应突触时间延迟的 SNP 系统(AD SNP 系统)。在 ADSNP 系统中,除了神经元之外,还引入了能够产生三磷酸腺苷(ATP)的星形胶质细胞。星形胶质细胞在接收到尖峰后,将尖峰转化为 ATP 并将 ATP 发送到它们控制的突触,以改变突触时间延迟。证明了 ADSNP 系统在数生成和接受模式下的图灵通用性。此外,还给出了一个使用 93 个神经元和星形胶质细胞的小型通用 ADSNP 系统。通过与六个变体的比较,证明了 ADSNP 系统的优越性。最后,构建了一个用于信用卡欺诈检测的 ADSNP 系统,验证了 ADSNP 系统解决实际问题的可行性。通过考虑自适应突触延迟,AD SNP 系统更好地恢复了生物神经网络中信息传递的过程,增强了 SNP 系统的适应性,使时间控制更加精确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验