让科学与现实相匹配:如何部署一个由参与者驱动的数字脑健康平台。

Matching science to reality: how to deploy a participant-driven digital brain health platform.

作者信息

Anda-Duran Ileana De, Hwang Phillip H, Popp Zachary Thomas, Low Spencer, Ding Huitong, Rahman Salman, Igwe Akwaugo, Kolachalama Vijaya B, Lin Honghuang, Au Rhoda

机构信息

Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.

Department of Epidemiology, Boston University School of Public Health, Boston, MA, United States.

出版信息

Front Dement. 2023;2. doi: 10.3389/frdem.2023.1135451. Epub 2023 May 5.

Abstract

INTRODUCTION

Advances in digital technologies for health research enable opportunities for digital phenotyping of individuals in research and clinical settings. Beyond providing opportunities for advanced data analytics with data science and machine learning approaches, digital technologies offer solutions to several of the existing barriers in research practice that have resulted in biased samples.

METHODS

A participant-driven, precision brain health monitoring digital platform has been introduced to two longitudinal cohort studies, the Boston University Alzheimer's Disease Research Center (BU ADRC) and the Bogalusa Heart Study (BHS). The platform was developed with prioritization of digital data in native format, multiple OS, validity of derived metrics, feasibility and usability. A platform including nine remote technologies and three staff-guided digital assessments has been introduced in the BU ADRC population, including a multimodal smartphone application also introduced to the BHS population. Participants select which technologies they would like to use and can manipulate their personal platform and schedule over time.

RESULTS

Participants from the BU ADRC are using an average of 5.9 technologies to date, providing strong evidence for the usability of numerous digital technologies in older adult populations. Broad phenotyping of both cohorts is ongoing, with the collection of data spanning cognitive testing, sleep, physical activity, speech, motor activity, cardiovascular health, mood, gait, balance, and more. Several challenges in digital phenotyping implementation in the BU ADRC and the BHS have arisen, and the protocol has been revised and optimized to minimize participant burden while sustaining participant contact and support.

DISCUSSION

The importance of digital data in its native format, near real-time data access, passive participant engagement, and availability of technologies across OS has been supported by the pattern of participant technology use and adherence across cohorts. The precision brain health monitoring platform will be iteratively adjusted and improved over time. The pragmatic study design enables multimodal digital phenotyping of distinct clinically characterized cohorts in both rural and urban U.S. settings.

摘要

引言

健康研究中的数字技术进步为研究和临床环境中的个体数字表型分析提供了机会。数字技术不仅为采用数据科学和机器学习方法进行高级数据分析提供了机会,还为研究实践中导致样本偏差的一些现有障碍提供了解决方案。

方法

一个由参与者驱动的精准脑健康监测数字平台已被引入两项纵向队列研究,即波士顿大学阿尔茨海默病研究中心(BU ADRC)和博加卢萨心脏研究(BHS)。该平台的开发优先考虑原生格式的数字数据、多操作系统、衍生指标的有效性、可行性和可用性。一个包含九种远程技术和三项工作人员指导的数字评估的平台已被引入BU ADRC人群,其中包括一个多模式智能手机应用程序也被引入了BHS人群。参与者可以选择他们想要使用的技术,并可以随着时间的推移操纵他们的个人平台和日程安排。

结果

截至目前,来自BU ADRC的参与者平均使用5.9种技术,这为众多数字技术在老年人群中的可用性提供了有力证据。两个队列的广泛表型分析正在进行中,收集的数据涵盖认知测试、睡眠、身体活动、言语、运动活动、心血管健康、情绪、步态、平衡等。在BU ADRC和BHS的数字表型分析实施中出现了一些挑战,并且方案已经修订和优化,以在维持参与者联系和支持的同时尽量减少参与者负担。

讨论

参与者对技术的使用模式和跨队列的依从性支持了原生格式数字数据、近实时数据访问、被动参与者参与以及跨操作系统技术可用性的重要性。精准脑健康监测平台将随着时间的推移进行迭代调整和改进。这种务实的研究设计能够在美国农村和城市环境中对不同临床特征的队列进行多模式数字表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f703/11285575/87b7121f1e2d/frdem-02-1135451-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索