Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, United States.
Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, United States.
Am J Physiol Cell Physiol. 2024 Jul 1;327(1):C48-C64. doi: 10.1152/ajpcell.00168.2024. Epub 2024 May 6.
Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-β signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSCs with the TGF-β inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-β signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice. A Na/K-ATPase α1 caveolin-binding motif regulates adipogenesis. Mutation of this binding motif in the mouse leads to reduced fat with increased extracellular matrix production and inflammation. RNA-seq analysis and pharmacological interventions in human iPSC-derived adipocytes revealed that TGF-β signal, rather than Na/K-ATPase-mediated ion transport, is a key mediator of NKA regulation of adipogenesis.
在小鼠和人类中发现的缺陷突出了陷窝网络在脂肪细胞生物学的关键方面的重要性。普遍存在的钠钾-ATP 酶(NKA)α1 同工型的保守 N 端陷窝蛋白结合基序(CBM)允许 NKA/陷窝蛋白-1(Cav1)相互作用,影响 NKA 信号转导和陷窝分布。它已被证明对动物发育和个体发生以及人类诱导多能干细胞(hiPSC)的谱系特异性分化至关重要。然而,其在出生后脂肪生成中的作用尚未得到充分研究。我们使用遗传方法改变 hiPSC 衍生的脂肪细胞(iAdi-mCBM)和小鼠(mCBM)中的 CBM,研究了 NKA CBM 信号在脂肪生成中的调节功能。 Seahorse XF 细胞代谢分析显示,iAdi-mCBM 的糖酵解受损,与 ATP 合成偶联的呼吸减少。这些代谢功能障碍伴随着细胞外基质(ECM)的广泛重塑的证据,包括胶原染色增加、ECM 标记基因的过表达以及 RNAseq 分析揭示的 TGF-β 信号增强。通过慢病毒递送 WT NKA α1 或用 TGF-β 抑制剂 SB431542 处理 mCBM hiPSC 来挽救 mCBM,使 ECM 正常化,表明在脂肪生成过程中,NKA CBM 信号完整性对于适当控制 TGF-β信号和 ECM 硬度是必需的。在 mCBM 雄性小鼠中发现了生理影响,其脂肪量减少,伴有脂肪纤维化增加和脂肪细胞大小减小的组织学和转录证据。基于这些发现,我们提出,在人类 iAdi 中发现的 NKA/Cav1 调节途径的遗传改变导致了小鼠的脂肪营养不良。钠钾-ATP 酶α1 陷窝蛋白结合基序调节脂肪生成。该结合基序在小鼠中的突变导致脂肪减少,细胞外基质生成增加和炎症增加。RNA-seq 分析和人类 iPSC 衍生的脂肪细胞中的药理学干预揭示了 TGF-β 信号,而不是钠钾-ATP 酶介导的离子转运,是 NKA 调节脂肪生成的关键介质。