Suppr超能文献

钠钾-ATP 酶 α1/Src 相互作用调节代谢储备和西方饮食不耐受。

The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance.

机构信息

Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, USA.

Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.

出版信息

Acta Physiol (Oxf). 2021 Jul;232(3):e13652. doi: 10.1111/apha.13652. Epub 2021 Apr 4.

Abstract

AIM

Highly prevalent diseases such as insulin resistance and heart failure are characterized by reduced metabolic flexibility and reserve. We tested whether Na/K-ATPase (NKA)-mediated regulation of Src kinase, which requires two NKA sequences specific to the α1 isoform, is a regulator of metabolic capacity that can be targeted pharmacologically.

METHODS

Metabolic capacity was challenged functionally by Seahorse metabolic flux analyses and glucose deprivation in LLC-PK1-derived cells expressing Src binding rat NKA α1, non-Src-binding rat NKA α2 (the most abundant NKA isoform in the skeletal muscle), and Src binding gain-of-function mutant rat NKA α2. Mice with skeletal muscle-specific ablation of NKA α1 (skα1-/-) were generated using a MyoD:Cre-Lox approach and were subjected to treadmill testing and Western diet. C57/Bl6 mice were subjected to Western diet with or without pharmacological inhibition of NKA α1/Src modulation by treatment with pNaKtide, a cell-permeable peptide designed by mapping one of the sites of NKA α1/Src interaction.

RESULTS

Metabolic studies in mutant cell lines revealed that the Src binding regions of NKA α1 are required to maintain metabolic reserve and flexibility. Skα1-/- mice had decreased exercise endurance and mitochondrial Complex I dysfunction. However, skα1-/- mice were resistant to Western diet-induced insulin resistance and glucose intolerance, a protection phenocopied by pharmacological inhibition of NKA α1-mediated Src regulation with pNaKtide.

CONCLUSIONS

These results suggest that NKA α1/Src regulatory function may be targeted in metabolic diseases. Because Src regulatory capability by NKA α1 is exclusive to endotherms, it may link the aerobic scope hypothesis of endothermy evolution to metabolic dysfunction.

摘要

目的

胰岛素抵抗和心力衰竭等高发疾病的特征是代谢灵活性和储备降低。我们测试了钠钾-ATP 酶(NKA)介导的Src 激酶调节,这需要两个特定于α1 同工型的 NKA 序列,是否是一种可以通过药理学靶向的代谢能力调节剂。

方法

通过 Seahorse 代谢通量分析和 LLC-PK1 衍生细胞中的葡萄糖剥夺来功能性地挑战代谢能力,这些细胞表达 Src 结合大鼠 NKAα1、非 Src 结合大鼠 NKAα2(骨骼肌中最丰富的 NKA 同工型)和 Src 结合功能获得性突变大鼠 NKAα2。使用 MyoD:Cre-Lox 方法生成骨骼肌特异性 NKAα1 缺失(skα1-/-)小鼠,并对其进行跑步机测试和西方饮食处理。C57/Bl6 小鼠接受西方饮食,或用 pNaKtide 处理以抑制 NKAα1/Src 调节,pNaKtide 是一种通过映射 NKAα1/Src 相互作用的一个位点设计的细胞通透性肽。

结果

突变细胞系的代谢研究表明,NKAα1 的 Src 结合区域是维持代谢储备和灵活性所必需的。skα1-/-小鼠的运动耐力下降和线粒体复合物 I 功能障碍。然而,skα1-/-小鼠对西方饮食诱导的胰岛素抵抗和葡萄糖不耐受具有抗性,这种保护作用可以通过 pNaKtide 抑制 NKAα1 介导的 Src 调节来模拟。

结论

这些结果表明,NKAα1/Src 调节功能可能是代谢疾病的靶点。由于 NKAα1 的 Src 调节能力是内温动物所独有的,它可能将内温动物进化的需氧范围假说与代谢功能障碍联系起来。

相似文献

1
The Na/K-ATPase α1/Src interaction regulates metabolic reserve and Western diet intolerance.
Acta Physiol (Oxf). 2021 Jul;232(3):e13652. doi: 10.1111/apha.13652. Epub 2021 Apr 4.
2
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C202-C210. doi: 10.1152/ajpcell.00124.2017. Epub 2017 Nov 8.
4
Overexpression of the Na+/K+ ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling.
Circ Res. 2014 Jan 17;114(2):249-256. doi: 10.1161/CIRCRESAHA.114.302293. Epub 2013 Nov 11.
6
Involvement of Na/K-ATPase in hydrogen peroxide-induced activation of the Src/ERK pathway in LLC-PK1 cells.
Free Radic Biol Med. 2014 Jun;71:415-426. doi: 10.1016/j.freeradbiomed.2014.03.036. Epub 2014 Apr 1.
7
Identification of a mutant α1 Na/K-ATPase that pumps but is defective in signal transduction.
J Biol Chem. 2013 May 10;288(19):13295-304. doi: 10.1074/jbc.M113.467381. Epub 2013 Mar 26.
8
Expression of rat Na-K-ATPase α2 enables ion pumping but not ouabain-induced signaling in α1-deficient porcine renal epithelial cells.
Am J Physiol Cell Physiol. 2015 Sep 15;309(6):C373-82. doi: 10.1152/ajpcell.00103.2015. Epub 2015 Jun 24.
9
Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism.
Am J Physiol Cell Physiol. 2020 Dec 1;319(6):C1107-C1119. doi: 10.1152/ajpcell.00083.2020. Epub 2020 Sep 30.
10
Expression of mutant α1 Na/K-ATPase defective in conformational transition attenuates Src-mediated signal transduction.
J Biol Chem. 2013 Feb 22;288(8):5803-14. doi: 10.1074/jbc.M112.442608. Epub 2013 Jan 3.

引用本文的文献

1
Factors that influence the Na/K-ATPase signaling and function.
Front Pharmacol. 2025 Jul 29;16:1639859. doi: 10.3389/fphar.2025.1639859. eCollection 2025.
2
Targeting Na,K-ATPase-Src signaling to normalize cerebral blood flow in a murine model of familial hemiplegic migraine.
J Cereb Blood Flow Metab. 2025 May;45(5):842-854. doi: 10.1177/0271678X241305562. Epub 2024 Dec 4.
3
Na/K-ATPase: More than an Electrogenic Pump.
Int J Mol Sci. 2024 Jun 1;25(11):6122. doi: 10.3390/ijms25116122.
4
Role of Na/K-ATPase α1 caveolin-binding motif in adipogenesis.
Am J Physiol Cell Physiol. 2024 Jul 1;327(1):C48-C64. doi: 10.1152/ajpcell.00168.2024. Epub 2024 May 6.
6
The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension.
Clin Sci (Lond). 2023 Oct 31;137(20):1595-1618. doi: 10.1042/CS20220796.
7
The microtubule network enables Src kinase interaction with the Na,K-ATPase to generate Ca flashes in smooth muscle cells.
Front Physiol. 2022 Sep 23;13:1007340. doi: 10.3389/fphys.2022.1007340. eCollection 2022.
8
Regulation of Myogenesis by a Na/K-ATPase α1 Caveolin-Binding Motif.
Stem Cells. 2022 Mar 16;40(2):133-148. doi: 10.1093/stmcls/sxab012.
9
Phosphorylation of Na,K-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells.
J Membr Biol. 2021 Dec;254(5-6):531-548. doi: 10.1007/s00232-021-00209-7. Epub 2021 Nov 8.

本文引用的文献

1
3
Attenuation of Na/K-ATPase/Src/ROS amplification signal pathway with pNaktide ameliorates myocardial ischemia-reperfusion injury.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):1142-1148. doi: 10.1016/j.ijbiomac.2018.07.001. Epub 2018 Jul 3.
4
Physiological and biochemical characteristics of skeletal muscles in sedentary and active rats.
J Muscle Res Cell Motil. 2018 Apr;39(1-2):1-16. doi: 10.1007/s10974-018-9493-0. Epub 2018 Jun 15.
5
The Na/K-ATPase Oxidant Amplification Loop Regulates Aging.
Sci Rep. 2018 Jun 26;8(1):9721. doi: 10.1038/s41598-018-26768-9.
6
Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism.
J Lipid Res. 2018 Jul;59(7):1276-1282. doi: 10.1194/jlr.D082370. Epub 2018 May 8.
7
Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: a positron emission tomography study.
Eur J Endocrinol. 2018 May;178(5):523-531. doi: 10.1530/EJE-17-0882. Epub 2018 Mar 13.
8
Isoform-specific role of Na/K-ATPase α1 in skeletal muscle.
Am J Physiol Endocrinol Metab. 2018 Jun 1;314(6):E620-E629. doi: 10.1152/ajpendo.00275.2017. Epub 2018 Feb 13.
9
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C202-C210. doi: 10.1152/ajpcell.00124.2017. Epub 2017 Nov 8.
10
PGC-1α Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs.
Cell Metab. 2017 Nov 7;26(5):778-787.e5. doi: 10.1016/j.cmet.2017.09.006. Epub 2017 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验