Yang Zhangqin, Wang Yuting, Lan Lidan, Wang Yuyan, Zhang Xinxing
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China.
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
Small. 2024 Sep;20(36):e2401580. doi: 10.1002/smll.202401580. Epub 2024 May 6.
The construction of flexible actuators with ultra-fast actuation and robust mechanical properties is crucial for soft robotics and smart devices, but still remains a challenge. Inspired by the unique mechanism of pinecones dispersing seeds in nature, a hygroscopic actuator with interlayer network-bonding connected gradient structure is fabricated. Unlike most conventional bilayer actuator designs, the strategy leverages biobased polyphenols to construct strong interfacial H-bonding networks between 1D cellulose nanofibers and 2D graphene oxide, endowing the materials with high tensile strength (172 MPa) and excellent toughness (6.64 MJ m). Furthermore, the significant difference in hydrophilicity between GO and rGO, along with the dense interlayer H-bonding, enables ultra-fast water exchange during water absorption and desorption processes. The resulted actuator exhibits ultra-fast driving speed (154° s), excellent pressure-resistant and cyclic stability. Taking advantages of these benefits, the actuator can be fabricated into smart devices (such as smart grippers, humidity control switches) with significant potential for practical applications. The presented approach to constructing interlayer H-bonding in gradient structures is instructive for achieving high performance and functionalization of biomass nanomaterials and the complex of 1D/2D nanomaterials.
构建具有超快驱动速度和强大机械性能的柔性致动器对于软机器人技术和智能设备至关重要,但仍然是一项挑战。受自然界中松果散播种子的独特机制启发,制备了一种具有层间网络键合连接梯度结构的吸湿致动器。与大多数传统的双层致动器设计不同,该策略利用生物基多酚在一维纤维素纳米纤维和二维氧化石墨烯之间构建强大的界面氢键网络,赋予材料高拉伸强度(172兆帕)和出色的韧性(6.64兆焦/立方米)。此外,氧化石墨烯和还原氧化石墨烯之间亲水性的显著差异,以及致密的层间氢键,使得在吸水和解吸过程中能够实现超快的水交换。所得致动器表现出超快的驱动速度(154°/秒)、出色的耐压性和循环稳定性。利用这些优势,该致动器可制成具有重大实际应用潜力的智能设备(如智能夹具、湿度控制开关)。本文提出的在梯度结构中构建层间氢键的方法对于实现生物质纳米材料以及一维/二维纳米材料复合物的高性能和功能化具有指导意义。