Zhang Dajie, Ding Jia, Zhou Yulin, Ju Jie
School of Nanoscience and Materials Engineering, Henan University, Zhengzhou 475004, China.
Nanomaterials (Basel). 2024 Sep 24;14(19):1544. doi: 10.3390/nano14191544.
Actuators based on moisture-sorption-responsive materials can convert moisture energy into mechanical/electrical energy, making the development of moisture-sorption materials a promising pathway for harnessing green energy to address the ongoing global energy crisis. The deformability of these materials plays a crucial role in the overall energy conversion performance, where moisture sorption capacity determines the energy density. Efforts to boost the moisture absorption capacity and rate have led to the development of a variety of moisture-responsive materials in recent years. These materials interact with water molecules in different manners and have shown diverse application scenarios. Here, in this review, we summarize the recent progress on moisture-sorption-responsive materials and their applications. We begin by categorizing moisture-sorption materials-biomaterials, polymers, nanomaterials, and crystalline materials-according to their interaction modes with water. We then review the correlation between moisture-sorption and energy harvesting performance. Afterwards, we provide examples of the typical applications using these moisture-sorption materials. Finally, we explore future research directions aimed at developing next-generation high-performance moisture-sorption materials with higher water uptake, tunable water affinity, and faster water absorption.
基于吸湿响应材料的致动器能够将湿气能量转化为机械能/电能,这使得吸湿材料的开发成为利用绿色能源解决当前全球能源危机的一条有前景的途径。这些材料的可变形性在整体能量转换性能中起着关键作用,其中吸湿能力决定了能量密度。近年来,为提高吸湿能力和速率所做的努力催生了多种吸湿响应材料。这些材料以不同方式与水分子相互作用,并展现出多样的应用场景。在此综述中,我们总结了吸湿响应材料及其应用的最新进展。我们首先根据吸湿材料与水的相互作用模式,将其分为生物材料、聚合物、纳米材料和晶体材料。然后,我们回顾吸湿与能量收集性能之间的相关性。之后,我们给出使用这些吸湿材料的典型应用实例。最后,我们探索未来的研究方向,旨在开发具有更高吸水量、可调水亲和力和更快吸水速度的下一代高性能吸湿材料。