Departments of Medicine and Oncology, Rochester, Minnesota.
Gastrointestinal Research Unit, Mayo Clinic, Rochester, Minnesota.
Cancer Res Commun. 2024 May 23;4(5):1344-1350. doi: 10.1158/2767-9764.CRC-24-0031.
Deep learning may detect biologically important signals embedded in tumor morphologic features that confer distinct prognoses. Tumor morphologic features were quantified to enhance patient risk stratification within DNA mismatch repair (MMR) groups using deep learning. Using a quantitative segmentation algorithm (QuantCRC) that identifies 15 distinct morphologic features, we analyzed 402 resected stage III colon carcinomas [191 deficient (d)-MMR; 189 proficient (p)-MMR] from participants in a phase III trial of FOLFOX-based adjuvant chemotherapy. Results were validated in an independent cohort (176 d-MMR; 1,094 p-MMR). Association of morphologic features with clinicopathologic variables, MMR, KRAS, BRAFV600E, and time-to-recurrence (TTR) was determined. Multivariable Cox proportional hazards models were developed to predict TTR. Tumor morphologic features differed significantly by MMR status. Cancers with p-MMR had more immature desmoplastic stroma. Tumors with d-MMR had increased inflammatory stroma, epithelial tumor-infiltrating lymphocytes (TIL), high-grade histology, mucin, and signet ring cells. Stromal subtype did not differ by BRAFV600E or KRAS status. In p-MMR tumors, multivariable analysis identified tumor-stroma ratio (TSR) as the strongest feature associated with TTR [HRadj 2.02; 95% confidence interval (CI), 1.14-3.57; P = 0.018; 3-year recurrence: 40.2% vs. 20.4%; Q1 vs. Q2-4]. Among d-MMR tumors, extent of inflammatory stroma (continuous HRadj 0.98; 95% CI, 0.96-0.99; P = 0.028; 3-year recurrence: 13.3% vs. 33.4%, Q4 vs. Q1) and N stage were the most robust prognostically. Association of TSR with TTR was independently validated. In conclusion, QuantCRC can quantify morphologic differences within MMR groups in routine tumor sections to determine their relative contributions to patient prognosis, and may elucidate relevant pathophysiologic mechanisms driving prognosis.
A deep learning algorithm can quantify tumor morphologic features that may reflect underlying mechanisms driving prognosis within MMR groups. TSR was the most robust morphologic feature associated with TTR in p-MMR colon cancers. Extent of inflammatory stroma and N stage were the strongest prognostic features in d-MMR tumors. TIL density was not independently prognostic in either MMR group.
深度学习可能可以检测到肿瘤形态特征中嵌入的具有生物学意义的信号,这些信号赋予了不同的预后。使用深度学习对肿瘤形态特征进行量化,以增强 DNA 错配修复 (MMR) 组内患者的风险分层。我们使用一种定量分割算法 (QuantCRC) 来识别 15 种不同的形态特征,对来自 III 期 FOLFOX 辅助化疗临床试验的 402 例 III 期结肠癌患者进行分析[191 例缺陷型 (d)-MMR;189 例功能型 (p)-MMR]。结果在独立队列中得到验证(176 例 d-MMR;1094 例 p-MMR)。确定形态特征与临床病理变量、MMR、KRAS、BRAFV600E 和复发时间 (TTR) 的关系。建立多变量 Cox 比例风险模型以预测 TTR。肿瘤形态特征在 MMR 状态上有显著差异。p-MMR 肿瘤具有更不成熟的纤维母细胞性间质。d-MMR 肿瘤具有更多的炎症性基质、上皮性肿瘤浸润淋巴细胞 (TIL)、高级别组织学、粘蛋白和印戒细胞。基质亚型与 BRAFV600E 或 KRAS 状态无关。在 p-MMR 肿瘤中,多变量分析确定肿瘤-基质比 (TSR) 是与 TTR 相关性最强的特征[HRadj 2.02;95%置信区间 (CI),1.14-3.57;P = 0.018;3 年复发率:40.2%比 20.4%;Q1 比 Q2-4]。在 d-MMR 肿瘤中,炎症性基质的程度(连续 HRadj 0.98;95%CI,0.96-0.99;P = 0.028;3 年复发率:13.3%比 33.4%,Q4 比 Q1)和 N 期是最稳健的预后因素。TSR 与 TTR 的相关性得到了独立验证。结论:QuantCRC 可以在常规肿瘤切片中量化 MMR 组内的形态差异,以确定它们对患者预后的相对贡献,并可能阐明影响预后的相关病理生理机制。
深度学习算法可以量化 MMR 组内的肿瘤形态特征,这些特征可能反映了推动预后的潜在机制。在 p-MMR 结肠癌中,TSR 是与 TTR 相关性最强的形态特征。炎症性基质的程度和 N 期是 d-MMR 肿瘤中最强的预后因素。TIL 密度在任何 MMR 组中都不是独立的预后因素。