Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
Oncotarget. 2024 May 3;15:275-284. doi: 10.18632/oncotarget.28582.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and COVID-19 infection has led to worsened outcomes for patients with cancer. SARS-CoV-2 spike protein mediates host cell infection and cell-cell fusion that causes stabilization of tumor suppressor p53 protein. In-silico analysis previously suggested that SARS-CoV-2 spike interacts with p53 directly but this putative interaction has not been demonstrated in cells. We examined the interaction between SARS-CoV-2 spike, p53 and MDM2 (E3 ligase, which mediates p53 degradation) in cancer cells using an immunoprecipitation assay. We observed that SARS-CoV-2 spike protein interrupts p53-MDM2 protein interaction but did not detect SARS-CoV-2 spike bound with p53 protein in the cancer cells. We further observed that SARS-CoV-2 spike suppresses p53 transcriptional activity in cancer cells including after nutlin exposure of wild-type p53-, spike-expressing tumor cells and inhibits chemotherapy-induced p53 gene activation of p21(WAF1), TRAIL Death Receptor DR5 and MDM2. The suppressive effect of SARS-CoV-2 spike on p53-dependent gene activation provides a potential molecular mechanism by which SARS-CoV-2 infection may impact tumorigenesis, tumor progression and chemotherapy sensitivity. In fact, cisplatin-treated tumor cells expressing spike were found to have increased cell viability as compared to control cells. Further observations on γ-H2AX expression in spike-expressing cells treated with cisplatin may indicate altered DNA damage sensing in the DNA damage response pathway. The preliminary observations reported here warrant further studies to unravel the impact of SARS-CoV-2 and its various encoded proteins including spike on pathways of tumorigenesis and response to cancer therapeutics. More efforts should be directed at studying the effects of the SARS-CoV-2 spike and other viral proteins on host DNA damage sensing, response and repair mechanisms. A goal would be to understand the structural basis for maximal anti-viral immunity while minimizing suppression of host defenses including the p53 DNA damage response and tumor suppression pathway. Such directions are relevant and important including not only in the context of viral infection and mRNA vaccines in general but also for patients with cancer who may be receiving cytotoxic or other cancer treatments.
严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)和 COVID-19 感染导致癌症患者的预后恶化。SARS-CoV-2 刺突蛋白介导宿主细胞感染和细胞融合,导致肿瘤抑制因子 p53 蛋白稳定。之前的计算机分析表明,SARS-CoV-2 刺突蛋白直接与 p53 相互作用,但这种假定的相互作用尚未在细胞中得到证实。我们使用免疫沉淀测定法检查了 SARS-CoV-2 刺突、p53 和 MDM2(介导 p53 降解的 E3 连接酶)在癌细胞之间的相互作用。我们观察到 SARS-CoV-2 刺突蛋白中断了 p53-MDM2 蛋白相互作用,但未在癌细胞中检测到 SARS-CoV-2 刺突蛋白与 p53 蛋白结合。我们进一步观察到,SARS-CoV-2 刺突蛋白抑制了癌细胞中的 p53 转录活性,包括野生型 p53 暴露于纳曲林后、表达刺突蛋白的肿瘤细胞和抑制化疗诱导的 p21(WAF1)、TRAIL 死亡受体 DR5 和 MDM2 的 p53 基因激活。SARS-CoV-2 刺突对 p53 依赖性基因激活的抑制作用提供了一种潜在的分子机制,即 SARS-CoV-2 感染可能影响肿瘤发生、肿瘤进展和化疗敏感性。事实上,与对照细胞相比,用顺铂处理的表达刺突蛋白的肿瘤细胞的细胞活力增加。用顺铂处理表达刺突蛋白的细胞中 γ-H2AX 表达的进一步观察可能表明 DNA 损伤反应途径中的 DNA 损伤感知发生改变。这里报告的初步观察结果需要进一步研究,以揭示 SARS-CoV-2 及其各种编码蛋白(包括刺突蛋白)对肿瘤发生和癌症治疗反应途径的影响。应更多地致力于研究 SARS-CoV-2 刺突蛋白和其他病毒蛋白对宿主 DNA 损伤感知、反应和修复机制的影响。目标是了解最大限度地发挥抗病毒免疫作用的结构基础,同时最大限度地减少宿主防御的抑制,包括 p53 DNA 损伤反应和肿瘤抑制途径。这些方向不仅与病毒感染和 mRNA 疫苗的背景有关,而且与可能正在接受细胞毒性或其他癌症治疗的癌症患者有关。