IEEE Trans Nanobioscience. 2024 Jul;23(3):391-402. doi: 10.1109/TNB.2024.3396142. Epub 2024 Jul 1.
The traveling car renter problem (TCRP) is a variant of the Traveling Salesman Problem (TSP) wherein the salesman utilizes rented cars for travel. The primary objective of this problem is to identify a solution that minimizes the cumulative operating costs. Given its classification as a non-deterministic polynomial (NP) problem, traditional computers are not proficient in effectively resolving it. Conversely, DNA computing exhibits unparalleled advantages when confronted with NP-hard problems. This paper presents a DNA algorithm, based on the Adleman-Lipton model, as a proposed approach to address TCRP. The solution for TCRP can be acquired by following a series of fundamental steps, including coding, interaction, and extraction. The time computing complexity of the proposed DNA algorithm is O(nm) for TCRP with n cities and m types of cars. By conducting simulation experiments, the solutions for certain instances of TCRP are computed and compared to those obtained by alternative algorithms. The proposed algorithm further illustrates the potential of DNA computing, as a form of parallel computing, to address more intricate large-scale problems.
旅行车租赁问题(TCRP)是旅行商问题(TSP)的变体,其中销售人员使用租赁汽车进行旅行。该问题的主要目标是确定一种能够最小化累积运营成本的解决方案。由于它被归类为非确定性多项式(NP)问题,传统计算机在有效解决它方面并不擅长。相比之下,DNA 计算在面对 NP 难问题时具有无与伦比的优势。本文提出了一种基于 Adleman-Lipton 模型的 DNA 算法,作为解决 TCRP 的一种方法。通过一系列基本步骤,可以获得 TCRP 的解决方案,包括编码、交互和提取。对于具有 n 个城市和 m 种汽车的 TCRP,所提出的 DNA 算法的时间计算复杂度为 O(nm)。通过进行模拟实验,计算了 TCRP 的某些实例的解决方案,并将其与其他算法的解决方案进行了比较。该算法进一步说明了 DNA 计算作为一种并行计算形式,解决更复杂的大规模问题的潜力。