Suppr超能文献

二氧化碳响应筛选揭示了 MAP 激酶在 CO2 触发气孔关闭中的关键作用。

CO2 response screen in grass Brachypodium reveals the key role of a MAP kinase in CO2-triggered stomatal closure.

机构信息

School of Biological Sciences, Cell and Developmental Biology Department, University of California San Diego, La Jolla, CA 92093-0116, USA.

Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, Aichi 464-0813, Japan.

出版信息

Plant Physiol. 2024 Sep 2;196(1):495-510. doi: 10.1093/plphys/kiae262.

Abstract

Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized B. distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wild-type Bd21-3 parent control plants after exposure to increased CO2. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.

摘要

植物通过关闭气孔来响应 CO2 浓度的增加,这有助于提高水分利用效率。由于哑铃形保卫细胞两侧有辅助细胞,因此与真双子叶植物相比,禾本科植物的气孔反应更快。然而,禾本科植物气孔 CO2 信号转导突变体的正向遗传筛选尚未报道。模式植物短柄草与重要的农艺作物亲缘关系密切,基因组大部分是共线性的。为了深入了解气孔运动中 CO2 控制机制,我们利用 EMS 诱变的 Brachypodium distachyon M5 代群体进行了无偏正向遗传筛选,使用红外成像来鉴定在高 CO2 下叶片温度发生变化的植物。在分离的突变体中,“chill1”突变体在暴露于高 CO2 后比野生型 Bd21-3 亲本对照植物表现出更低的叶片温度。chill1 植物尽管保持了强烈的脱落酸诱导的气孔关闭反应,但高 CO2 诱导的气孔关闭严重受损。通过 bulked segregant whole-genome sequencing 分析,以及对进一步回交 F4 代植物和钠离子和 CRISPR-cas9 突变体的分析和表征,chill1 被定位到一个蛋白激酶,即丝裂原活化蛋白激酶 5(BdMPK5)。chill1 突变削弱了 BdMPK5 蛋白介导的 CO2/HCO3-感应,以及体外高温 1(HT1)Raf 样激酶。此外,AlphaFold2 定向结构建模预测,鉴定的 BdMPK5-D90N chill1 突变体残基位于 BdMPK5 与 BdHT1 Raf 样激酶的界面上。BdMPK5 是一种关键的信号成分,介导 CO2 诱导的气孔运动,被提议作为禾本科植物初级 CO2 传感器的一个组成部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验