Yang Jia, Cai Yuchen, Wang Feng, Li Shuhui, Zhan Xueying, Xu Kai, He Jun, Wang Zhenxing
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
Nano Lett. 2024 May 15;24(19):5862-5869. doi: 10.1021/acs.nanolett.4c01190. Epub 2024 May 6.
Dynamic vision perception and processing (DVPP) is in high demand by booming edge artificial intelligence. However, existing imaging systems suffer from low efficiency or low compatibility with advanced machine vision techniques. Here, we propose a reconfigurable bipolar image sensor (RBIS) for in-sensor DVPP based on a two-dimensional WSe/GeSe heterostructure device. Owing to the gate-tunable and reversible built-in electric field, its photoresponse shows bipolarity as being positive or negative. High-efficiency DVPP incorporating front-end RBIS and back-end CNN is then demonstrated. It shows a high recognition accuracy of over 94.9% on the derived DVS128 data set and requires much fewer neural network parameters than that without RBIS. Moreover, we demonstrate an optimized device with a vertically stacked structure and a stable nonvolatile bipolarity, which enables more efficient DVPP hardware. Our work demonstrates the potential of fabricating DVPP devices with a simple structure, high efficiency, and outputs compatible with advanced algorithms.
动态视觉感知与处理(DVPP)在蓬勃发展的边缘人工智能中需求旺盛。然而,现有的成像系统存在效率低下或与先进机器视觉技术兼容性差的问题。在此,我们基于二维WSe/GeSe异质结构器件提出了一种用于传感器内DVPP的可重构双极图像传感器(RBIS)。由于栅极可调谐且可逆的内建电场,其光响应呈现出正或负的双极性。随后展示了结合前端RBIS和后端卷积神经网络(CNN)的高效DVPP。在派生的DVS128数据集上,它显示出超过94.9%的高识别准确率,并且与没有RBIS的情况相比,所需的神经网络参数要少得多。此外,我们展示了一种具有垂直堆叠结构和稳定非易失性双极性的优化器件,这使得DVPP硬件更高效。我们的工作展示了制造具有简单结构、高效率且输出与先进算法兼容的DVPP器件的潜力。