Subramanian Yuvaraj, Rajagopal Rajesh, Ryu Kwang-Sun
Department of Chemistry, University of Ulsan, Doowang-dong, Nam-gu, Ulsan 44776, Republic of Korea.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24534-24546. doi: 10.1021/acsami.4c01352. Epub 2024 May 6.
Recently, the halide solid electrolyte (SE) system has been widely used in lithium solid-state batteries due to their specific properties, such as the high electrochemical stability window that prevents any side reaction with the electrode/electrolyte interface. Conspicuously, the halide SE possesses very low ionic conductivity values in the range (0.2-0.5) mS cm. In this work, we enhance the ionic conductivity of LiYCl SE by the substitution of low-cost Fe and Zr elements on the Y-site and F on the Cl site, in which the electrolyte is prepared through high-energy ball milling without a heat treatment process. The structural analysis reveals that the prepared halide SEs showed the pure phase of the LiYCl tetragonal crystal structure and were free from impurity phases. In the prepared composition, the LiYZrCl and LiYZrClF electrolyte exhibited a higher ionic conductivity of 2.05 and 1.45 mS cm, respectively, than LiYCl (0.26 mS cm). Interestingly, the LiYZrClF electrolyte possesses a better electrochemical stability window of 1.29-3.9 V than LiYZrCl (2.1-3.79 V). Moreover, the electrochemical results revealed that the assembled solid-state battery using LiYZrCl and LiYZrClF electrolyte demonstrated the higher initial Coulombic efficiency of 84.7 and 87%, respectively, than LiYCl of 82.6%. We consider LiYZrClF to be an important electrolyte candidate in all-solid-state batteries.
最近,卤化物固体电解质(SE)体系因其特定性能,如具有高电化学稳定性窗口可防止与电极/电解质界面发生任何副反应,而在锂固态电池中得到广泛应用。值得注意的是,卤化物SE在(0.2 - 0.5)mS/cm范围内具有非常低的离子电导率值。在这项工作中,我们通过在Y位上用低成本的Fe和Zr元素以及在Cl位上用F进行取代来提高LiYCl SE的离子电导率,其中电解质是通过高能球磨制备的,无需热处理过程。结构分析表明,所制备的卤化物SE呈现出LiYCl四方晶体结构的纯相,且无杂质相。在所制备的组成中,LiYZrCl和LiYZrClF电解质的离子电导率分别为2.05和1.45 mS/cm,高于LiYCl(0.26 mS/cm)。有趣的是,LiYZrClF电解质具有比LiYZrCl(2.1 - 3.79 V)更好的1.29 - 3.9 V电化学稳定性窗口。此外,电化学结果表明,使用LiYZrCl和LiYZrClF电解质组装的固态电池的初始库仑效率分别为84.7%和87%,高于LiYCl的82.6%。我们认为LiYZrClF是全固态电池中一种重要的电解质候选物。