Heßelmann Matthias, Lee Jason Keonhag, Chae Sudong, Tricker Andrew, Keller Robert Gregor, Wessling Matthias, Su Ji, Kushner Douglas, Weber Adam Z, Peng Xiong
Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Chemical Process Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074 Aachen, Germany.
ACS Appl Mater Interfaces. 2024 May 15;16(19):24649-24659. doi: 10.1021/acsami.4c02799. Epub 2024 May 6.
Coupling renewable electricity to reduce carbon dioxide (CO) electrochemically into carbon feedstocks offers a promising pathway to produce chemical fuels sustainably. While there has been success in developing materials and theory for CO reduction, the widespread deployment of CO electrolyzers has been hindered by challenges in the reactor design and operational stability due to CO crossover and (bi)carbonate salt precipitation. Herein, we design asymmetrical bipolar membranes assembled into a zero-gap CO electrolyzer fed with pure water, solving both challenges. By investigating and optimizing the anion-exchange-layer thickness, cathode differential pressure, and cell temperature, the forward-bias bipolar membrane CO electrolyzer achieves a CO faradic efficiency over 80% with a partial current density over 200 mA cm at less than 3.0 V with negligible CO crossover. In addition, this electrolyzer achieves 0.61 and 2.1 mV h decay rates at 150 and 300 mA cm for 200 and 100 h, respectively. Postmortem analysis indicates that the deterioration of catalyst/polymer-electrolyte interfaces resulted from catalyst structural change, and ionomer degradation at reductive potential shows the decay mechanism. All these results point to the future research direction and show a promising pathway to deploy CO electrolyzers at scale for industrial applications.
将可再生电力与将二氧化碳(CO)电化学还原为碳原料相结合,为可持续生产化学燃料提供了一条有前景的途径。虽然在开发用于CO还原的材料和理论方面已取得成功,但由于CO渗透和(双)碳酸盐沉淀,反应器设计和运行稳定性方面的挑战阻碍了CO电解槽的广泛应用。在此,我们设计了组装成零间隙CO电解槽的不对称双极膜,该电解槽以纯水为原料,解决了这两个挑战。通过研究和优化阴离子交换层厚度、阴极压差和电池温度,正向偏置双极膜CO电解槽在小于3.0 V的电压下实现了超过80%的CO法拉第效率,部分电流密度超过200 mA cm,且CO渗透可忽略不计。此外,该电解槽在150和300 mA cm下分别运行200和100 h时,衰减速率为0.61和2.1 mV h。事后分析表明,催化剂/聚合物电解质界面的恶化是由催化剂结构变化引起的,还原电位下离聚物的降解显示了衰减机制。所有这些结果都指出了未来的研究方向,并展示了大规模部署CO电解槽用于工业应用的一条有前景的途径。