Yan Dongxiao, Ruiz Jose Roberto Lopez, Hsieh Meng-Lin, Jeong Daeho, Vöröslakos Mihály, Lanzio Vittorino, Warner Elisa V, Ko Eunah, Tian Yi, Patel Paras R, ElBidweihy Hatem, Smith Connor S, Lee Jae-Hyun, Cheon Jinwoo, Buzsáki György, Yoon Euisik
bioRxiv. 2024 Apr 28:2024.04.25.591141. doi: 10.1101/2024.04.25.591141.
Flexible intracortical neural probes have drawn attention for their enhanced longevity in high-resolution neural recordings due to reduced tissue reaction. However, the conventional monolithic fabrication approach has met significant challenges in: (i) scaling the number of recording sites for electrophysiology; (ii) integrating of other physiological sensing and modulation; and (iii) configuring into three-dimensional (3D) shapes for multi-sided electrode arrays. We report an innovative self-assembly technology that allows for implementing flexible origami neural probes as an effective alternative to overcome these challenges. By using magnetic-field-assisted hybrid self-assembly, multiple probes with various modalities can be stacked on top of each other with precise alignment. Using this approach, we demonstrated a multifunctional device with scalable high-density recording sites, dopamine sensors and a temperature sensor integrated on a single flexible probe. Simultaneous large-scale, high-spatial-resolution electrophysiology was demonstrated along with local temperature sensing and dopamine concentration monitoring. A high-density 3D origami probe was assembled by wrapping planar probes around a thin fiber in a diameter of 80∼105 μm using optimal foldable design and capillary force. Directional optogenetic modulation could be achieved with illumination from the neuron-sized micro-LEDs (μLEDs) integrated on the surface of 3D origami probes. We could identify angular heterogeneous single-unit signals and neural connectivity 360° surrounding the probe. The probe longevity was validated by chronic recordings of 64-channel stacked probes in behaving mice for up to 140 days. With the modular, customizable assembly technologies presented, we demonstrated a novel and highly flexible solution to accommodate multifunctional integration, channel scaling, and 3D array configuration.
柔性皮层内神经探针因其在高分辨率神经记录中因组织反应减少而具有更长的使用寿命而备受关注。然而,传统的整体制造方法在以下方面面临重大挑战:(i)扩大用于电生理的记录位点数量;(ii)集成其他生理传感和调制功能;(iii)配置成用于多面电极阵列的三维(3D)形状。我们报告了一种创新的自组装技术,该技术允许实现柔性折纸神经探针,作为克服这些挑战的有效替代方案。通过使用磁场辅助混合自组装,可以将多个具有不同模态的探针精确对齐地堆叠在一起。使用这种方法,我们展示了一种多功能设备,在单个柔性探针上集成了可扩展的高密度记录位点、多巴胺传感器和温度传感器。同时展示了大规模、高空间分辨率的电生理记录以及局部温度传感和多巴胺浓度监测。通过使用最佳可折叠设计和毛细作用力,将平面探针缠绕在直径为80至105μm的细纤维上,组装成了高密度3D折纸探针。通过集成在3D折纸探针表面的神经元大小的微型发光二极管(μLED)进行照明,可以实现定向光遗传学调制。我们可以识别围绕探针360°的角度异质单单元信号和神经连接性。通过在行为小鼠中对64通道堆叠探针进行长达140天的慢性记录,验证了探针的使用寿命。通过所展示的模块化、可定制的组装技术,我们展示了一种新颖且高度灵活的解决方案,以适应多功能集成、通道扩展和3D阵列配置。