Institute of Nano Science and Technology (INST), Sector 81, Knowledge City, Mohali, 140306 Punjab, India.
Biomacromolecules. 2024 Jun 10;25(6):3271-3287. doi: 10.1021/acs.biomac.3c01410. Epub 2024 May 7.
Tuning self-assembling pathways by implementing different external stimuli has been extensively studied, owing to their effective control over structural and mechanical properties. Consequently, multicomponent peptide hydrogels with high structural tunability and stimuli responsiveness are crucial in dictating cellular behavior. Herein, we have implemented both coassembly approach and pathway-dependent self-assembly to design nonequilibrium nanostructures to understand the thermodynamic and kinetic aspects of peptide self-assembly toward controlling cellular response. Our system involved an ultrashort peptide gelator and a hydrophilic surfactant which coassembled through different pathways, i.e., heat-cool and sonication methods with variable energy input. Interestingly, it was possible to access diverse structural and mechanical properties at the nanoscale in a single coassembled system. Further, the hydrophilic surfactant provided additional surface functionalities, thus creating an efficient hydrophilic matrix for cellular interaction. Such diverse functionalities in a single coassembled system could lead to the development of advanced scaffolds, with applications in various biomedical fields.
通过实施不同的外部刺激来调整自组装途径已经得到了广泛的研究,因为它们可以有效地控制结构和机械性能。因此,具有高结构可调性和刺激响应性的多组分肽水凝胶对于控制细胞行为至关重要。在本文中,我们采用共组装方法和依赖于途径的自组装来设计非平衡纳米结构,以了解肽自组装的热力学和动力学方面,从而控制细胞反应。我们的系统涉及一种超短肽凝胶剂和一种亲水表面活性剂,它们通过不同的途径共组装,即通过热量冷却和超声方法,输入可变的能量。有趣的是,有可能在单个共组装系统中获得纳米尺度上的不同结构和机械性能。此外,亲水表面活性剂提供了额外的表面功能,从而为细胞相互作用创造了有效的亲水基质。在单个共组装系统中具有多种功能可以导致先进支架的发展,这些支架可应用于各种生物医学领域。